BA SANGAM COLLEGE

YEAR 13

MATHEMATICS

WORKSHEET 1

STRAND 1 – COMPLEX NUMBERS

Given that Z = 2 + i
Write Z in polar form

b) Show that $\mathbf{Z} = |\mathbf{Z}|^2$

Ζ

- 2) Solve: $4x^2 + 9 = 0$, $x \in z$
- 3) Express $\frac{3+2i}{1-4i}$ in the form a+bi
- 4) For the complex number
 - i. i. Write Z in polar form
 - ii. ii.Find using De Moivre's Theorem and express the answer in **Rectangular form**

5) The Polar form of a complex number Z is given as 64 ($\cos \frac{-\pi}{3} + i \sin \frac{-\pi}{3}$) Find the cube

roots of Z and express your answers in rectangular form

- 6) Two complex numbers are given as U = -3 + 4i and V = 5 12i. Show that |UV| = |U| |V|.
- 7) Given $P=5(\cos 90^{\circ} + i \sin 90^{\circ})$ and $Q=2(\cos 30^{\circ} + i \sin 30^{\circ})$,
 - a) Represent P on an Argand diagram.
 - b) Find PQ and express your answer in rectangular form.

8) Express
$$\frac{2+5i}{i}$$
 in the form of a+bi

- 9) A complex number Z is given as i
 - a) Express Z in polar form.
 - b) Use De Moivre's Theorem to find Z⁵, in rectangular form.

10) Find the three distinct roots of the complex equation $W^3 = 8(\cos 270^\circ + i \sin 270^\circ)$

STRAND 2 – VECTORS

1. The position vector a = a = b are defined by:

$$a^{=}i + 2k$$
 and $=i - 3j + k$ Find :

b

- i. $|\hat{a}|$ and $|\hat{b}|$
- ii. Express the vector AB in terms of the unit vectors i,j and k
- iii. Find the angle between $a^{and} b$
- 2. Given that and , find the constant k such that
- 3. The vector equation of a line is given as .Write the symmetric equation of this line.

4. If R and S are the points (-1,2,4) and (3,0,-2) respectively, find the coordinates of point

P such that $\frac{\text{RP}}{\text{PS}} = \frac{-1}{3}$

- 5. Given that and
 - a. Find a-2b
 - b. Show that the two vectors **a** and **b** are orthogonal
- 6. Two points are given as P_1 (-2,3,5) and P_2 (3,-1,-2). Find the equation of the line passing through point P_1 in the direction P_1P_2 .
- 7. For the equation of the line P_1P_2 joining the points $P_1(-2,3,5)$ and $P_2(3,-1,-2)$ in
 - a. Vector form.
 - b. Parametric form.
 - c. Symmetric form

STRAND 3 - FUNCTIONS

1. The functions $f: x \rightarrow x^2 + 1$ and $g: x \rightarrow 4x - 2$

Find:

- a) f g(x)
- b) domain of f g(x)
- c) fog(x)

2. The functions f and g are defined by $\mathcal{F}(\mathbf{x}) = \mathcal{F}(\mathbf{x}) =$ Find

a) fog(x)

b) f + g(x)

- c) the domain of fog(x)
- d) the range of fog(x)
- **<u>3.</u>** Sketch the graph of $y = (x 1)^2(x + 2)^3$

(Clearly show all the intercepts, turning points and the point of inflection

4. Write the equation for the polynomial function shown in the graph below.

5. The graph of a rational function, g(x), has the equation

$$g(x)=\frac{x^2+4x+3}{x-1}.$$

- i. Find the x and y intercepts of g(x).
- ii. Find the equation of the vertical asymptote of g(x).
- iii. Find the equation of the oblique asymptote of g(x).
- iv. Sketch the graph of g(x), showing the intercepts and the asymptotes.

6. A rational function is given by $g(x) = \frac{3-x}{(x+1)(x-2)}$

- i. Find the x and y intercepts of the graph of g(x).
- ii. Identify the asymptotes and give their equations.

iii. Sketch the graph of the function g(x) clearly showing the intercepts and asymptotes.

7. The graph of a rational function, g(x), has the equation

$$g(x) = \frac{(x+1)(x-3)}{(x+2)(x-2)}$$

- i. Find the x and y intercepts of the graph of g(x).
- ii. Find the equation(s) of the vertical asymptote(s) of the graph of g(x).
- iii. Find the equation of the horizontal asymptote of the graph of g(x).
- iv. Sketch the graph of g(x), showing the intercepts and asymptotes.
- 8. A polynomial function is given as y=f(x).

Given that the function satisfies f(0) = f(2) = f(5) = 0 and f(3) = 24,

- i. State the x and y intercepts of the function.
- ii. Find the equation of the function.
- iii. Sketch the graph of the function

STRAND 4 - LIMITS AND CONTINUITY

1. Find

$$4-7x-3x^2$$

a.

$$x + 7$$

b.

2. Evaluate the following limits:

$$(2\mathbf{X}+5)^2$$

a.

$$\overline{4-\mathbf{x}^2}$$

b.

3. The graph of a function g(x) is shown below.

Use the graph above to find the value(s) of x for which g(x) is:

- a. discontinuous
- b. non-differentiable
- c. equal to zero
- 4. The graph of another piece-wise function g(x) is given below.

- a. For what value(s) of x is g(x) discontinuous?
- b. For what value(s) of x is g(x) non-differentiable?

$$\lim_{x^{\tiny{\tiny{\tiny{\tiny{R}}}}} 2} g($$

c. Find

 $\lim_{x^{\tiny{\tiny{\tiny{\tiny{R}}}}} 2^-} g$

- d. Find
- e. Find g(2)