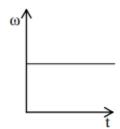
YEAR 13 PHYSICS

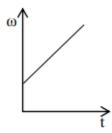
WORKSHEET 01

STRAND 1: MECHANICS

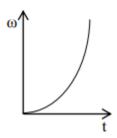
1. Which concept is used to determine the escape velocity of an object?

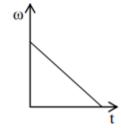

A. Electric for	rce equals magnetic force.		
B. Kinetic ene	ergy equals potential energy	7.	
C. Centripetal	force equals gravitational	force.	
D. Rotational	energy equals translational	energy.	
	f an object is calculated fro determined to be ± 0.4 g. T	•	be 28.6789 g. The \pm absolute error in rted, in g, as
A. 29	B. 28.7	C. 28.68	D. 28.679
3.What is the	analogy to mass in rotation	al motion?	
A. Torque.	B. Moment of inertia. C.	Angular momentum.	D. Angular acceleration.
horizontal. As		•	is inclined at an angle θ with the ion between the bottom surface of the
A. increase.	B. decrease.	C. becomes zero.	D. remain the same.
5.Two objects between the two	-	are separated by a distar	nce of 1 m. The gravitational force
A. twice G	B. equal to G	C. less than G D. gr	reater than G
6. If moment	clockwise is equal to mome	ent anticlockwise then th	ne system will

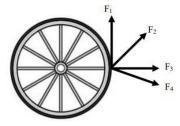
B. rotate clockwise. C. remain stationary. D. rotate anticlockwise.


Sangam Education Board – Online Resources

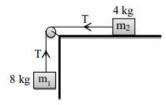
- 7. Which of the following is analogous to torque in linear motion?
- A. Mass
- B. Force
- C. Momentum
- D. Acceleration
- 8. Which of the following graphs best describe a rotating object slowing down?


A.

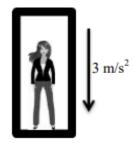

В.


C.

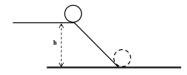
D.



9. The diagram given below shows the direction of four forces of equal magnitude acting at a point on a bicycle wheel.


- Which of the forces will give the maximum torque?
- A. F1
- B. F2
- C. F3
- D. F4
- 10. Which of the following is a requirement for conservation of angular momentum?
- A. The net force on the body is zero.
- B. The net torque on the body is zero.
- C. The kinetic energy of the body is zero.
- D. The net momentum of the body is zero.

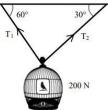
11. Two masses, (m1 = 8 kg and m2 = 4 kg) are suspended over a frictionless pulley by a light inelastic string as shown in the diagram. The coefficient of kinetic friction, μ , between mass m2 and the surface is 0.3.



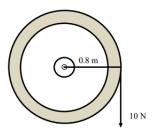
Calculate the following:

- (i) force of friction, F_f, on mass, m₂. (1 mark)
- (ii) acceleration of the masses. (2 marks)
- 12. Abha who has a mass of 70 kg uses an elevator while coming down a building. The elevator descends at 3 m/s^2 .

- (i) Would Abha feel lighter or heavier while the elevator is accelerating downwards? (1 mark)
- (ii) Calculate Abha's apparent weight if her true weight is 700 N. (2 marks)
- 13. A spherical ball of mass m, and radius r, starts from rest at a height, h, and rolls down on a frictionless incline without slipping as shown below. Take the rotational inertia of the spherical ball to be $I = \frac{2}{5}mr^2$



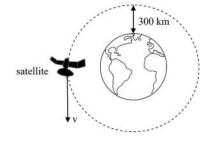
- (i) Describe the type of motion the spherical ball is undergoing. (1 mark)
- (ii) Show that the velocity, v, at the bottom of the incline is: $V = \sqrt{\frac{10gh}{7}}$ (3 marks)


14. A bird cage weighing 200 N is suspended from a beam as shown below.

Calculate the following:

- (i) T1
- (2 marks)
- (ii) T2
- (1 mark)

15. A wheel with a radius of 0.8 m and a moment of inertia of 4.8 kgm2 has a constant force of 10 N applied tangentially at the rim as shown below. Calculate the:



- (i) angular acceleration. (2 marks)
- (ii) angular speed, ω , after 4 s from rest. (1 mark)

16.A communication satellite is placed in a circular orbit, 300 km above the earth's surface.

Calculate the:

- (i) orbital speed of the satellite. (2 marks)
- (ii) period of the satellite. (1 mark)

17. A 50 kg satellite orbits 300 km above the surface of the earth. Calculate the following energies of the satellite.

- (i) Kinetic energy (1 mark)
- (ii) Gravitational potential energy (1 mark)
- (iii) Total energy (1 mark)

THE END.