SUVA SANGAM COLLEGE

<u>YEAR 13</u>

PHYSICS

WORKSHEET 1

Strand 1		Mechanics					
Sub-Strand		Measurements					
Content Learning		Apply the skills and methods of measurement in calculating quantities					
Outcome		and perform dimensional to see it is dimensionally correct.					
Reference from		Pg 2 to 8					
Text							
Questions							
No.	CONCEPT IN BRIEF : To calculate uncertainty in a series of readings, the						
	estimated value of the reading will be given by taking the average of the readings						
	and the uncertainty will be given by half of the range of measurements						
1.	a) A group of Year 13 students took a measurement for the length of the						
	microscope slide and obtained the following values:						
	8.52, 8.54, 8.53, 8.55, 8.53, 8.51						
	Evaluate the measurement with its appropriate uncertainty.						
	b) Filipe measured the period of oscillation of a simple pendulum. The recorded						
	readings were: 4.63, 4.56, 4.52, 4.70 and 4.61 seconds.						
	(i) Find the mean of the five measurements						
	(ii) Calculate the absolute error.						
	CONCEPT IN BRIEF : When measurements are raised to a power multiply the %						
	Uncertainty by the power.						
		$(a + h\%)^n = a^n + (nh)\%$					

2.	a) A glass cube is measured to be 3.2 \pm 0.1 cm. Find its volume in cm^3 along with						
	its absolute uncertainty. $(V = L^3)$						
	b) Tomasi made a paper cube and calculated the volume using the formula:						
	$V = L^3$						
	Calculate the length along with its absolute uncertainty if $V = 12.4 \pm 0.2 \ cm^3$.						
	CONCEPT IN BRIEF: Dimensional Analysis.						
	Quantity	Unit Name	Unit Symbol	Dimension			
	Length	Meter	m	L			
	Mass	Kilogram	kg	М			
	Time	Second	S	Т			
	Note: $L + L = L$ but $L \times L = L^2$						
3.	a) The period of simple harmonic motion of pendulum is defined as $T = 2\pi \sqrt{\frac{L}{g}}$;						
	where L is the length of pendulum and g is the acceleration due to gravity. Show						
	that this equation is dimensionally consistent.						
	b) Show that the formula $v_f^2 = v_i^2 + 2ad$ is dimensionally consistent, where						
	v_f and v_i are the final and initial velocities respectively, d is the distance and a is						
	the acceleration.						