LABASA SANGAM (SKM) COLLEGE TECHNICAL DRAWING WORKSHEETS
 YEAR 13

Given: The digram below shows a roof truss with vertical loads acting on the nodes. The truss is supported at each end by R_{L} and R_{R}
Required:
i. Draw the polar diagram on the load line and polar point ' O '.
ii. Draw the link polygon.
iii. Determine the mgnitude of reactions R_{L} and R_{R}.
(1 mark)
(2 marks)
v. Complete the given table showing the nature and magnitude of the force in members BG and FG.
(1 mark)

R_{L}

LOAD LINE

[7 marks]
The section of a circular spring having a diameter of 14 mm , pitch of 60 mm and its axis. consruct the true helical form of a right-hand spring for $1^{1 ⁄ / 4}$ revolutions.

VECTOR FORCES		
Member	Magnitude (kN)	Nature
BG		
FG		

SCALE 1 mm : 1 kN

\square

Given: A semi - ellipse has been drawn full size
Required:
[7 marks]
(7 marks)

Part B
A Surveyor's incomplete Field book of readings taken at a new housing sub Required
i. Complete the Level Book and check the booking.
(4 marks)
ii. Draw the cross section of the surveyed field on the given profile using the given scales. (4 marks)
Verticle scale $\quad=1: 100$
Horizontal scale $=1: 1000$

Back sight	Inter sight	Fore sight	Fise	Fall	Reduced level (m)	Distance $($ meters $)$	remarks
1.8					20 m	0.00 m	Station A
	1.0					35 m	
2.0		3.8				86 m	
2.4		3.0				107 m	
	1.5					132 m	
		0.7				160 m	

Chainage in metres

The diagram shows a roof truss with vertical loads acting on the nodes. The truss is supported at each end by R_{L} and R_{R}.

Using the diagram:
i. Draw the polar diagram on the given load line.
(5 marks)
ii. Determine the magnitude of RL_{L} and R_{R}.
R_{L} \qquad —— R_{R} \qquad quilibrant (1 mark)
Determine the position of the equilibrant(1 mark)
iii. Determine the position of the equilibrant. (1 mark)

Complete the given table showing the nature and magnitude of the force in each member.
(2 marks)

Member	BG	CJ	GH	FG
Magnitude (kN)				
Nature $(\mathrm{C} / \mathrm{T})$				

LOAD LINE

Scale 1 mm : 5 kN
${ }^{a}$

QUESTION 4

Part A

(15 marks)

[2 marks]
Given: A parabolic curve and Point \mathbf{P} which lies on the curve
Required: Find the center of curvature for point \mathbf{P}. (2 marks)
Part C (7 marks)
Given: A rolling wheel \mathbf{W}, point \mathbf{P} outside the rolling wheel, rotating direction \mathbf{R} and combination of flat and circular base \mathbf{K}.

Required: Draw the locus of point \mathbf{P} as the rolling wheel rolls for $1 / 2$ revolution

Part B
[6 marks]
Given: A rolling circle moving along a curved path in an anti-clockwise direction
Required Draw the locus of point \mathbf{P} outside the rolling circle for $1 / 2$ revolution.

(6 marks)

1	Correct divisions on rolling circle and labels shown	1	
2	Accuracy- path divisions, $1 / 2$ rev, direction	1	
3	Correct generating linesor method	1	
4	Correct shape of locus	2	
5	Correct line work	1	
6	Neatness	1	

\square

Draw the locus of point \mathbf{X} outside the given rolling circle A which rolls outside the base circle B without sliding for $1 / 2$ revolution.

Name the curve produced: \qquad (5 marks)

Method	$1 / 2$	
Cons lines	$1 / 2$	
Line type	$1 / 2$	
Line weight	$1 / 2$	
Neatness	$1 / 2$	
Accuracy	$1 / 2$	
Shape	$1 / 2$	
Position	$1 / 2$	
Size	$1 / 2$	
Outline	$1 / 2$	

. X
$+\mathrm{A}$

B
t
(a) GIVEN: The angle between the vectors $\left(45^{\circ}\right)$, the length of the first vector (CO) and the
vector ratio of 5:4 of a logarithmic spiral.
REQUIRED: (i) Complete the logarithmic progression.
(ii) Draw the logarithmic spiral on the given r
(ii) Draw the logarithmic spiral on the given radials in a clockwise direction for 1 revolution.

(b). GIVEN: The parabola with directrix, vertex and focal point and point P on the curve. (2marks) REQUIRED: Draw the tangent at point P.

Q6(b)			
1	Normal	$1 / 2$	
2	tangent	$1 / 2$	
3	Correct method used	1	

(C). GIVEN: The parabola with directrix, vertex and focal point and point P on the curve. (2marks) REQUIRED: Find the centre of curvature for a point P on the Parabola..

Q6(c)			
1	Normal	$1 / 2$	
2	tangent	$1 / 2$	
3	Centre of curvature	1	

Q6(a)(i)			
1	Correct scaled drawn	1	
2	Correct rotation/angle sued	1	
Q6 (ii)			
6	Correct sense	1/2	
7	Correct rotation	1/2	
8	Correct line work	1/2	
9	neatness	1/2	

(D). GIVEN: The parabola with directrix, vertex and focal point and point P outside the curve. (2marks) REQUIRED: Draw tangent from point P to the Parabola

Q6(d)			
1	Normal	$1 / 2$	
2	tangent	$1 / 2$	
3	Correct method used	1	

QUESTION 7

Plot the following course on the given chart.

1. The ship Furious 1 enters Amsterdam Habour on a course of $\mathbf{2 9 0}^{\circ}$ which will pass through Latitude $46^{\circ} \mathbf{3 1 . 8}$ 'S

Longitude $170^{\circ} \mathbf{4}^{\prime}$ E

2. To determine its position, a Running Fix is taken
a) Beacon 2 bears 270°
b) After sailing at 8 knots for 15 minutes, a second bearing on Beacon 2 bears 180° - MARK FIX
3. From the Fix, sail to Latitude $46^{\circ} 30.2^{\prime}$ 'S Longitude $170^{\circ} 0.6^{\prime} \mathbf{E}$.
4. She alters course Due East ($\mathbf{0 9 0}^{\circ}$) until Dolphin Island Trig and Hook Point are in transit.
5. She again alters course to clear Dolphin Island by 0.6 n miles.
6. (a) When directly abeam of Dolphin Island, turns to starboard (right) on a radius of $\mathbf{0 . 8} \mathbf{n}$ miles.
(b) Keep turning on the radius of 0.8 n miles until heading on a bearing of $\mathbf{1 2 5}^{\circ}$.
7. The Furious 1 continues on this course until in transit with Logan Wharf Lights, where she steers directly to the wharf

QUESTION 8 DESIGN

(20 marks)

Problem: Most of the schools do not have a proper bus shelter for students near the bus bay when they wait for the bus in either a rainy or sunny weather. During rainy weather, students get wet and are vulnerable to many sicknesses and this may be a reason for the high rate of absenteeism during the wet weather.

Brief: Design a bus shelter that is capable of withstanding any weather condition. It should have benches on the sides to cater for at least 15 people at a time.
(c) Explain with the help of sketches how the bench is assembled to the main bus shelter.
(d) Draw a pencil-rendered or a colour-rendered pictorial sketch of the complete bus shelter with the emphasis on proportion, functionality and aesthetics.

Specification: The bus shelter should:

1. be affordable;
2. be aesthetically appealing;
3. be made from two or more locally available materials;
4. have natural and unprocessed materials for the roof and;
5. have the benches fixed to the shelter.

Requirements:

(a) Produce two freehand pictorial sketches of the bus shelter.
(8 marks)
(b) Evaluate each sketch on the following basis:
(i) Materials
(ii) Strength

