SANGAM SKM COLLEGE NADI

LESSON NOTES

WEEK 1

CHEMISTRY

YEAR 12

Strand	3. Reactions
Sub-Strand	3.2 Oxidation and Reduction
Content	Investigate redox reactions and its application in the production of some useful
Learning	metals
Outcome	

Oxidation Reduction Terminology

Term	Transfer of atoms	Transfer of electrons	Change in oxidation number
Oxidation	Gain of oxygen E.g. Mg + O→ MgO Loss of Hydrogen E.g. NaH →Na+ H	Loss of Electron E.g. $Al \rightarrow Al^{3+} + 3e$	Increase in oxidation number
Reduction	Loss of oxygen E.g.6 CO ₂ +6 H ₂ O \rightarrow C ₆ H ₁₂ O ₆ + 6O ₂ Gain of Hydrogen E.g. H ₂ + F ₂ \rightarrow 2 HF	Gain of Electron E.g. $Cu^{2+} + 2e \rightarrow Cu$	Decrease in oxidation number
Oxidant (Oxidising agent)	Substance that loses oxygen or gains hydrogen	Substance that gains electron or an electron acceptor	Substance whose oxidation number has decreased
Reductant (Reducing agent)	Substance that gains oxygen or loses hydrogen	Substance that loses electron or an electron donor	Substance whose oxidation number has increased

OIL RIG

OIL - Oxidation is Loss of electrons

RIG - Reduction is Gain of electrons

Oxidising Agent			
Name	Appearance	Use	Reduction Equation
Oxygen (O ₂)	- Colourless gas	 Combustion Oxidation of metals 	$O_2 \rightarrow O^{2-}$
Chlorine (Cl ₂)	 Greenish yellow pungent gas 	- Bleaching - Disinfectant	$Cl_2 \rightarrow 2Cl^{-1}$
Permanganate ion (MnO4 [°])	- Purple coloured solution	Breathalyzer test Water treatment and disinfection Synthesis of organic compounds Oxidation of alcohols	$MnO_4^- \rightarrow Mn^{2+}$
Dichromate ion (Cr ₂ O ₇ ²⁻)	- Orange solution	 Chrome plating to protect metals from corrosion and to improve paint adhesion. photographic screen printing Breathalyzer test Wood treatment Sulfur dioxide test Oxidation of alcohols 	$Cr_2O_7^{2} \rightarrow Cr^{3+}$
Hydrogen peroxide (H ₂ O ₂)	- Colourless liquid	- Bleaching - Disinfectant/ Antiseptic	$H_2O_2 \rightarrow H_2O$
Dilute acids (H ⁺)	- Colourless	- Oxidation of metals	$H^+ \rightarrow H_2$

Reducing Agent					
Name	Appearance	Use	Oxida	tion E	quation
Metal e.g. Zn Mg Fe	- Silvery shiny metals	 Formation of metal oxides. 	Zn	\rightarrow	Zn ²⁺
			Mg	\rightarrow	Mg ²⁺
			Fe	\rightarrow	Fe ²⁺
Carbon	- Black solid- Charcoal	-Used in the smelting process in the production of metals.	С	→	CO ₂
Sulphur Dioxide	 Colourless gas Irritating smell Gives colourless 	- Used as a preservative as it delays the oxidation of food by besteria	SO ₂	→	SO42.
	solution	as a fumigant and bleaching agent.	SO3 ²	\rightarrow	SO4 ²
Ferrous ion	- Pale green solution	 Formation of iron oxides and hydroxides. 	Fe ²⁺	\rightarrow	Fe ³⁺
Carbon monoxide (CO)	- Is a colourless and odorless	 Important industrial gas, which is widely used as a fuel. 	СО	→	CO ₂

Exercise

- 1. What are two different definitions of oxidation?
- 2. What are two different definitions of reduction?
- 3. Which substance loses electrons and which substance gains electrons in this reaction?
 - i. $2Mg(s) + O_2(g) \rightarrow 2MgO$
 - ii. $2\text{Li}(s) + O_2(g) \rightarrow \text{Li}_2O_2(s)$
 - iii. $2Fe(s) + 3I_2(s) \rightarrow 2FeI_3(s)$

SANGAM SKM COLLEGE NADI

LESSON NOTES

WEEK 2

CHEMISTRY

YEAR 12

Strand	3. Reactions
Sub-Strand	3.2 Oxidation and Reduction
Content	Investigate redox reactions and its application in the production of some useful
Learning	metals
Outcome	

LESSON NOTES: 3.2.2 Oxidation number (Oxidation state)

An oxidation number is a number that is assigned to an element in a chemical reaction to show the total number of electrons which have been

----removed from an element (a positive oxidation state) or

---- added to an element (a negative oxidation state) to get to its present state.

Rules for assigning oxidation number

1. The oxidation number of an atom is zero in a neutral substance that contains only one type of element. Example: For O_2 and Mg, the oxidation number is 0.

 $O_{2(g)} = 0$

 $Mg_{(s)} = 0$ (***note the state)

The oxidation number of each oxygen atom in a compound is -2, except in peroxides (e.g. H₂O₂) where the oxidation number is -1.

C = +4 H=+1

- O = -2 O = -1
- 3. The oxidation number of each hydrogen atom in a compound is +1 except in **metallic hydrides** (example in LiH, NaH, CaH₂, and LiAlH₄) where it is -1.

Li = +1

H = -1

- 4. The oxidation number of Group I metals is +1.
- 5. The oxidation number of Group II metals is +2.

- The sum of the oxidation number in a neutral molecule is equal to zero (0). Example: For C₆H₁₂O₆, the oxidation number is 0.
- 7. The oxidation number of an atom in a monoatomic ion is equal to the charge on the ion. Example for: $Na+_{(aq)} = +1$, $Cl-_{(aq)} = -1$ (***note the state/molten/aqueous state)
- The sum of the oxidation numbers in a polyatomic ion is equal to the charge on the ion.
 Example for H₃O⁺, the oxidation number is +1.

Name	Formula	Charge
ammonium	NH4 ⁺	1+
hydroxide	OH-	1–
acetate	C ₂ H ₃ O ₂ ⁻	1–
permanganate	MnO ₄ -	1–
nitrate	NO ₃ ⁻	1–
chlorate	CIO3-	1–
bicarbonate	HCO3-	1–
carbonate	CO32-	2-
sulfate	SO42-	2–
phosphate	PO₄ ^{3−}	3–

all	end in <i>–ide</i> Monatomic	typically end Polyatomic	in - (<i>m</i>	-ate ost have O's)
	nitride	nitrate		ammonium
	N ^{3–}	NO3-		NH_4^+
	chloride	chlorate		hydroxide
	CI-	CIO3-		OH-
	sulfide	sulfate		
	S ²⁻	SO42-		
	phosphide	phosphate		
	P ³⁻	PO43-		

Names and Formulas for Compounds with Polyatomic lons Same rules as with all compounds. Example: calcium nitrate 1. symbols of ions Ca NO3 2. charges (as superscripts) Ca²⁺ NO3⁻ 3. crisscross (to get subscripts) Ca²⁺ NO3⁻ 4. erase charges CaNO32

5. use () for multiple polyatomic ions

Ca(NO₃)₂

Exercise: CHEMISTRY FOR YEAR 12 Page 73 Questions 1,3, 4

Sangam Education Board – Online Resources

SANGAM SKM COLLEGE NADI

LESSON NOTES

WEEK 3

CHEMISTRY

YEAR 12

Strand	3. Reactions
Sub-Strand	3.2 Oxidation and Reduction
Content	Investigate redox reactions and its application in the production of some useful
Learning	metals
Outcome	

LESSON NOTES: 3.2.3 Balancing REDOX equations

Before actually beginning to balance redox reactions, for each reaction you should be able to:

- i. Identify the species which is reacting but should not be involved in the redox equation.
- ii. Decide what the products are for each reacting species.
- iii. Work out which part is oxidation and which is reduction.
- iv. Formulate two half-equations.

Rules for balancing redox equations

- 1. Obtain the half-equations.
- 2. For each half-equation:
 - i. Balance all atoms except oxygen and hydrogen.
 - ii. Balance oxygen by adding water molecules (H₂O).
 - iii. Balance hydrogen by adding hydrogen ions, H+ .
 - iv. Balance charges by adding electrons.
- 3. Add the balanced half-equations so that the electrons cancel out.
- 4. Identify and cancel out terms common to both sides of the equation.

Exercise: CHEMISTRY FOR YEAR 12 Page 73 Questions 1,2, 6