<u>SUVA SANGAM COLLEGE</u>
YEAR 12
MATHEMATICS
WEEK 1: MONDAY 05/07 TO FRIDAY 09/07

STRAND	12.2 Algebra
SUB-STRAND	12.2.1
	Equations and In-equations
CONTENT LEARNING	12.2.1.4
OUTCOME	Solve quadratic equations
	and in – equations
REFERENCE FROM	Pg 58
TEXTBOOK	

Achievement Indicators

1. Solve quadratic equations and in - equations

Notes

Steps to solve

- 1. To solve equations, follow steps of making the variable, preferably 'x' the subject.
- 2. If you multiply or divide each side by a negative quantity, the inequality symbol must be reversed.
- 3. Sketch the graph
- 4. Follow the signs
- $<, \leq$ Highlight below the x-axis
- >, \geq Highlight above the x-axis

(open circle -for <, >)

(closed circle-for \leq, \geq)

Example 1

 $\overline{\text{Solve } x^2 - x - 6} > 0$

 $x^{2} - x - 6 > 0$ (x + 2)(x - 3) > 0

x intercepts x + 2 > 0, x - 3 > 0x > -2, x > 3

So, place open circle and highlight the region above the x-axis.

 $\therefore x < -2 \text{ or } x > 3$ <u>Example 2</u> Solve $x^2 + 2x - 3 \le 0$

 $\begin{array}{l} x^{2} + 2x - 3 \leq 0 \\ (x + 3)(x - 1) \leq 0 \\ x \ intercepts \\ x + 3 \leq 0, x - 1 \leq 0 \\ x \leq -3 \quad , \quad x \leq 1 \end{array}$

So, place closed circle and highlight the region below the x -axis.

Achievement Indicators

i. Find discriminantsii. State the nature of roots

NOTES

- The Discriminant of a quadratic equation $D = b^2 4ac$.
- The quadratic equations should always be in the form $ax^2 \pm bx \pm c = 0$

Example 1

Find the value of the discriminant of the equation $2x^2 - 3x + 5 = 0$ and state its nature of roots. Solution

 $2x^2 - 3x + 5 = 0$ compare the equation with

 $ax^2\pm bx\pm c=0$

$$a = 2$$
, $b = -3$, $c = 5$

We know that

$$D=b^2-4ac.$$

$$=(-3)^2-4(2)(5)$$

= 9 - 40

Since D > 0, there is no real roots

Concept $D < 0, No \ real \ roots$ $D = 0, One \ repeated \ real \ root$ $D > 0, Two \ distinct \ real \ roots$

Example 2

A quadratic equation is given as $-4x^2 + kx - 1 = 0$. Find the value (s) of k such that $-4x^2 + kx - 1 = 0$ has only 1 real root?

 $-4x^{2} + kx - 1 = 0$ $a = -4, \quad b = k, \ c = -1$ $D = b^{2} - 4ac.$ $b^{2} - 4ac = 0$ $(k)^{2} - 4(-4)(-1) = 0$ $(k)^{2} - 16 = 0$ $(k)^{2} = 16$ $k = \sqrt{16}$ $k = \pm 4$

Example 3

Find the value of the discriminant of the equation $\frac{x^2}{2} - x - 2 = 0$ and state its nature of roots? **Solution** $\frac{x^2}{2} - x - 2 = 0$

Compare hence $a = \frac{1}{2}$, b = -1 and c = -2Substitute in the formula $D = h^2 - 4ac$

$$D = (-1)^2 - 4\left(\frac{1}{2}\right)(-2)$$

D = 5Since,D > 5, there are two real roots. Student activity

FY12CE 2018

- 1. Consider the quadratic equation $3x^2 - 4x + 5 = 0$
 - a) Calculate the value of the **discriminan**t.
 - b) Hence, state the **nature** of the roots.

FY12CE 2017

- 2. A quadratic equation is given as $2x^2 + 3x + 1 = 0$
 - a) Calculate the value of the **discriminant**.
 - b) Hence, state the **nature** of the roots.

FY12CE 2016

3. A quadratic equation is given as $4x^2 + 3x + p = 0$. Find the value(s) of p such that $4x^2 + 3x + p = 0$ has 2 distinct real roots.

WEEK 3: MONDAY 19/07 TO FRIDAY 23/07			Example 2		
Achievement Indicators			$\frac{1}{2} \sum_{i=1}^{n} a^2 - b^2 \cdot b^2 + ab$		
- Simplify algebraic of	expressions		Simplify $-\frac{1}{8} \div \frac{1}{8a+8}$		
Use BEDMAS rule to sim	plify				
B Brackets			$\frac{a^2-b^2}{a} \stackrel{\cdot}{\cdot} \frac{b^2+ab}{a}$	Change the \div sign to \times	
E Exponents / powers	<i>x</i> ²		8 · 8a + 8	and take the reciprocal of	
D Division	÷ whichever comes first			the second fraction	
M Multiplication	X		$a^2-b^2 8a+8$	Factorize the individual	
A Addition	+ whichever comes first		$\frac{1}{8} \div \frac{1}{h^2 + ah}$	algebraic expressions	
S subtraction	-				
Rules for dividing fraction	IS .		$\frac{(a+b)(a-b)}{2} \times \frac{8(a+1)}{b(a+b)}$	Cross off the common	
- Change the divisio	n sign to multiplication		b = b(u+b)	factors	
- Take the reciproca	l (swap the numerator and the		(a-b) $(a+1)$	Simplify the fraction	
denominator) of th	e next term		$\frac{1}{1} \times \frac{b}{b}$		
- Multiply and simp	lifv				
I State I	5		$\frac{(a-b)(a+1)}{b}$		
Example 1		1			
$x^{2} + x^{2} + x^{2} + 8x$			Example 3		
Simplify $\frac{1}{y} - \frac{1}{3y} \div \frac{1}{9}$			Simplify $\frac{x^2 - 7x + 12}{x^2 - 16}$		
			$x^2 - 7x + 12$	Factorize the algebraic	
$2x 4x^2 8x$	Change the \div sign to \times		$\frac{1}{m^2}$ 16	fractions	
$\frac{1}{v} - \frac{3}{3v} \div \frac{9}{9}$	and take the reciprocal of		$x^{-} = 10$	Numerator quadratic	
	the second fraction			type I method	
				- Denominator difference of 2	
$2x (4x^2 9)$	Collect the numerator and			squares	
$\left \frac{1}{v} - \left(\frac{3v}{3v} \times \frac{3x}{8x} \right) \right $	denominator separately		(x-3)(x-4)	Cancel the common	
	(direct multiply)		$\overline{(x-4)(x+4)}$	factors	
			x-3		
$2x 36x^2$	Simplify the fraction (cancel		$\frac{1}{r \perp A}$		
$\frac{1}{y} - \frac{1}{24xy}$	the common factors)		Student Activity	<u> </u>	
			FY12CE 2017		
$\left(\frac{2x}{2}\right) \times 2 - \frac{3x}{2}$	Find the lowest common		1 Simplify $4x = x$	у	
$\begin{pmatrix} y \end{pmatrix} = 2y$	Denominator and collect		1. Simplify $\frac{-}{y} - \frac{-}{3} + \frac{-}{3}$	3	
	like terms				
4.4. 2.4					
$\frac{4x}{x} - \frac{3x}{x}$	Since the denominator is		FY12CE 2016		
2y 2y	same, simplify the		2. Simplify $\frac{x^2+2x}{x} \div \frac{x}{x}$:+2	
	numerator		1 5 8	16	
4					
$\frac{4x - 3x}{2}$ Collect like terms			5x	12 <i>y</i>	
2 <i>y</i>			3. Simplify $\frac{1}{3} - 4y$	$\frac{1}{7x}$	
<u>x</u>					
2 <i>y</i>					

WEEK 4: MONDAY 26/07 TO FRIDAY 30/07		Example 2		
		Determine the value of a if		
STRAND	12.2 Algebra	$f(x) = x^3 - 2x^2 + 3ax + 6$ has a remainder of 7 when divided by		
SUB-STRAND	12.2.2 Remainder and Factor	r = 1		
	Theorem	Find the value of $r - 1 = 0$		
CONTENT LEARNING	12.2.2.1	x by equating		
OUTCOME	Study and work with Cubic	divisor to 0 $x = 1$		
REFERENCE FROM	Pg 65 67	Substitute the $f(x) = x^3 - 3x^2 + 3x - 6$		
TEXTBOOK	1 g 05 - 07	value $7 = (1)^3 - 3(1)a^2$		
Achievement Indicators				
- Show that a given expression is a factor		+ 3(1) - 6		
- Calculate the rema	inders.	7 = 1 - 3a + 3 - 6		
Remainder theorem: if a polynomial		7 = -3a - 2		
p(x) is alviaed by the bill is $p(x)$	nomial x - a, the remainder obtained	0 - 2a		
Example		9 – -5u		
Consider a divisor $(x - a)$	which is also a factor of a polynomial	-3 = a		
f(x), Then				
Steps to find the remaind	er			
1. Find the value of	x i.e. by solving	STUDENT ACTIVITY		
divisor = 0				
$\begin{array}{c} x = a = 0 \\ r = a \end{array}$		<u>FY12CE 2015</u>		
2. Substitute the x v	alue in the polynomial $f(a)$.	1 A notymomial function is given by		
3. The remainder $=$	f(a).	1. A polynomial function is given by		
When any polynomial $f(x)$	x) is divided by $x - a$, the remainder	$f(x) = x^3 + kx^2 - 5x - 6$		
is $f(a)$				
Example 1				
A function is given as $f(x)$ Show that $(x + 2)$ is a fact	$= x^{3} - 2x^{2} - 5x + 6$	Find the value of k if $(x - 2)$ is a factor of $f(x)$.		
find the value of	x + 2 = 0			
w by equating to				
x by equating to	x = -z			
zero		<u>FY12CE 2018</u>		
Substitute the value $f(x)$	$x) = x^3 - 2x^2 - 5x + 6$	2 Calculate the value of k given that $x + 2$ is a		
of x in the $f(x) = (-2)^3 - 2(-2)^2 - 5(-2) + 6$		factor of		
polynomial $f(x) = f(x)$	(x) = -8 - 8 + 10 + 6	$f(x) = x^3 + 8x^2 + 17x + k$		
f(x)	c) = 0			
Since $f(-2) = 0, (x + 2)$	is a factor of $f(x)$.			
Example 1		$\frac{1}{2}$ A function $f(x)$ is given as		
Calculate the remainder whe	$en f(x) = x^2 - 2x + 1 \text{ is divided by } x -$	$\frac{1}{2}$ 3. A function $f(x)$ is given as		
\angle . Find the value of x by equal	ating $x - 2 = 0$	$f(x) = x^3 + x^2 - 17x + 15.$		
$\begin{vmatrix} r \text{ ind une value of } x \text{ by equaling} \\ \text{divisor to } 0 \\ x = 2 \end{vmatrix}$		Show that $(x - 1)$ is a factor of $f(x)$		
Substitute the x value in the $f(x) = x^2 - 2x + 1$				
polynomial $f(a)$	$f(2) = (2)^2 - 2(2) + 1$ is			
	f(2) = 4 - 4 + 1			
	= 1	41		
The remainder is equal to f	f(a) f(2) = 1			

WEEK 5: MONDAY 02/08 TO FRIDAY 06/08

Achievement Indicators

- Factorize cubic Expressions

Synthetic division is another way to divide a polynomial by the binomial x - c, where c is a constant.

Step 1: Set up the synthetic division. ...

Step 2: Bring down the leading coefficient to the bottom row.

Step 3: Multiply c by the value just written on the bottom row. ...

Step 4: Add the column created in step 3.

Example 1

Use synthetic method to divide $f(x) = 2x^3 - 5x^2 - x + 3$ by x + 3.

Solution

Example 2

Use the synthetic method factorize $f(x) = x^3 + 2x^2 - 5x - 6$ by x - 2.

the value of x by equating divisor to 0	$\begin{array}{c} x - 2 = 0\\ x = 2 \end{array}$
Use synthetic method to divide	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Factorize completely Use quadratic trinomial method of factorization	$x^{2} + 4x + 3$ (x - 2) (x + 1)(x + 3)

Example 3 Use the synthetic method factorize $f(x) = x^3 + 2x^2 - 13x + 10 \ by \ x + 5$

STUDENT ACTIVITY FY12CE 2016

1. A polynomial function is given by $f(x)=x^3 - 5x^2 - 2x + 24$ Given that x + 2 is one of the factors of f(x), find the other two factors.

FY12CE 2017

2. A polynomial function is given by $f(x) = x^3 - x^2 + x + 6$

Given that (x-3) is one of the factors of , find the other two factors.

FSLC 2013

- 3. A function f(x) is given as
 - $f(x) = x^3 + 2x^2 kx 6.$
- (a) Find the value of k if (x + 3) is a factor of f(x).
- (b) Factorize f(x) completely.

WORKSHEET

The remainder when $x^3 + 4x^2 - x + 3$ is divided by (x + 2) is 1. A. -19 Β. 3 C. 13 D. 25 If $f(x) = x^2 - 3x + 2$, the value of f(2) is 2. -1 Α. B. 0 С. 1 D. 4 3. Simplify $\frac{x^2 + 2xy}{2x^3y} \div \frac{xy + 2y^2}{6x^2y^3}$ A quadratic equation is given as $2x^2 + 3x + 1 = 0$. 4. Calculate the value of the discriminant. (i) Hence, state the nature of the roots. (ii) A polynomial function is given by $f(x) = x^3 + kx^2 - 5x - 6$. 5. Find the value of k if x-2 is a factor of f(x). (i) Hence factorise f(x) completely. (ii) A quadratic equation is given as $x^2 - px + 4 = 0$. Find the values of p such 6. that $x^2 - px + 4 = 0$ has real roots. (Hint: Solve $b^2 - 4ac \ge 0$).