SUVA SANGAM COLLEGE					
<u>YEAR 11</u>					
MATHEMATICS LIFE SKILLS					
WEEK 1: MONDAY 05/07 TO FRIDAY 09/07					
STRAND	11.2 Measurement in every day				
	context				
SUB-STRAND	11.2.1				
	Units of measurement and				
	prefixes				
CONTENT LEARNING	11.2.1.1				
OUTCOME	Explore metric units for				
	measurement and prefixes				
A abiation and Indiactors					

Achievement Indicators

1. Give the basic SI units

2. State the values of commonly used prefixes

Notes

Quantity	Symbol	Unit	Abbreviatio	
Length	l	Meter	m	
Mass	т	Kilogram	Kg	
Time	t	Seconds	S	
Electric current	Ι	Ampere	Α	
Temperature	Т	Kelvin	K	
Amount of	п	Mole	mol	
substance				
Luminous	Iv	candela	cd	
intensity				

Common Prefixes used with S Iunits				
Prefix	Symbol	meaning	Order of	
			magnitude	
Giga	G	1000 000 000	109	
Mega	М	1000 000	106	
Kilo	K	1 000	10 ³	
hecto	Н	100	10 ²	
deka	da	10	10 ¹	
	Base unit	1	10 ⁰	
Deci	d	0.1	10 ⁻¹	
Centi	С	0.01	10 ⁻²	
Milli	m	0.001	10 ⁻³	
Micro	μ	0.000 001	10 ⁻⁶	
nano	n	0.000 000 001	10 ⁻⁹	
INTERNET DATA				
1MB(megabyte) = 1024 KB(kilobyte)				
1024 MB(megabyte) = 1GB(gigabyte)				

Example 1				
How many <i>grams</i> are there in 15kg.				
1000g are there in 1kg				
Use the ratio	1kg = 1000g			
method	15kg = xg			
Cross multiply				
and solve for x	$(15 \times 1000) = (1 \times x)$			
	15000 = x			
	15000g are there in 15kg			

Example 2

How many centimetres are there in 3.5 meters?

100cm makes 1m				
Use the ratio $1m = 100cm$				
method	<u>$3.5 = xm$</u>			
Cross multiply	$(3.5 \times 100) = (1 \times x)$			
and solve for <i>x</i>	350 = x			
	3.5 m = 350 cm			

STUDENT ACTIVITY

- 1. Write the number of
 - a) micro amperes in one ampere.
 - b) Candela in 1 kilocandela.
 - c) Milligram in 1 gram.
- 2. Find the number of
 - a) kilograms in 1350grams.
 - b) Milliamperes are there in 3 amperes.
- 3. How many
 - a) kilobytes are there in 5 megabytes.
 - b) megabytes are there in 3 gigabytes.

WEEK 2: MONDAY 12/07 TO FRIDAY 16/07

STRAND	11.2 Measurement in every day context		
SUB-STRAND	11.2.2 Units of measurement and prefixes		
CONTENT LEARNING OUTCOME	11.2.1.1 Study conversion of units		

Achievement Indicators

1. convert from one unit to another.

NOTES

A conversion factor is a number used to change one set of

units to another, by multiplying or dividing.

Length

1km = 1000m

1m = 100cm

1cm = 10mm

Example 1

Change 2.5 km to cm.

×1000 ×100

 $km \longrightarrow m \longrightarrow cm$

Therefore

 $(km \ to \ cm) = (1000 \times \ 100) = 100 \ 000$

 $2.5km = 2.5 \times 100\ 000$

= <u>250 000*cm*</u>

Example 2

Convert 4.0m to cm. Meter to centimetre (× 100)

 $4.0m = 4 \times 100$

= 400 cm

Example 3

John bought 27.5m of cloth. How many cm of cloth did he buy?

1m = 100cm27.5 $m = 27.5 \times 100$ = 2750cm

. Please check out this video from YouTube explaining the lesson:

https://youtu.be/KfofCCmURol

Student activity

- Convert the following measurements to the indicated units:
 - a) 7 cm to mm
 - b) 8 m to cm
 - c) 9000 m to km
 - d) 29km to m
- Chase measured a line for his art project. It is 200 millimeters long. How many centimeters is the line?
- 3. Cheryl is moving to a new house. Her old house is3 kilometers from her new house. How manymeters is the old house from the new house?

WEEK 3: MONDAY 19/07 TO FRIDAY 23/07

Achievement Indicators

1. convert from one unit to another

NOTES

units to another, by multiplying or dividing.

Example 1

Convert 1560g to kilograms.

Grams to kilogram (\div 1000)

- $1560g = 1560 \div 1000$
 - = 1.56 kg

Example 2

Change 2 hours to seconds

Hours to seconds = $(60 \times 60 = 3600)$

Therefore $2hours = 2 \times 3600 = 7200 seconds$

Example 2

A school day lasts about 7 hours. How many seconds are there in a school day?

Convert hours minutes	1 hour = 60 minutes
	$7 hours = 7 \times 60$
	= 420 mins
Minutes to seconds	$1 \min = 60 seconds$
	$420 mins = 420 \times 60$
	= 25 200 seconds

Please check out this video from YouTube explaining the lesson:

https://youtu.be/nxA2mt27lM0

Student Activity

 James has 14,500 g of sand in his sandbox. He brings home another 7 400g of sand from the beach to add to his sandbox.

How many *kilograms* of sand does James have in his sandbox now?

2. Convert the following.

- a) 120seconds to minutes
- b) 32400 seconds to hours
- c) 2700 minutes to hours
- 3. Martin is taking a test at school. His teacher gave him 1 hour and 15 minutes to complete the test.

How many minutes does Martin take to finish the test?

WEEK 4: MONDAY 26/07 TO FRIDAY 30/07

STRAND	11.2 Measurement in every day		
	context		
SUB-STRAND	11.2.1		
	Standard form		
CONTENT	11.2.1.1		
LEARNING	Explore the method of expressing		
OUTCOME	large/ small numbers		

Achievement Indicators

Write numbers in standard form and vice versa

Standard form is a way of writing down very large or very small **numbers** easily.

Numbers represented as products of powers of 10 To write the number in standard form

- 1. The first number always has to be between 1 to 10
- 2. The nth power is based on how many places the decimal point moves.
- 3. The nth power is positive for big numbers and negative for small numbers.
- > On your calculator 1^{12} means 1×10^{12}
- To enter 1×10^{12} on your calculator, type 1 EXP 12.

RULE	FORMALLY	EXAMPLE				
1. Numbers are represented as products of powers of 10	$a \times 10^n$	2×10^{3} Not 2×11^{3}				
2. a is a decimal between 1 and 10 (or between -1 to -10)	$1 \le a \le 10$	2.5×10^{5} Not 25×10^{4}				
3. n is and integer $n \in I$ 1.0×10^{-2} Not $1.0 \times 10^{2.5}$						
Please check out this video from YouTube explaining the lesson:						

https://youtu.be/HO2krXdWyNo

Example 1

Write 65 0000 in standard form. Solution

 $65\ 0000 = 6.5\ \times 100\ 000$

 $= 6.5 \times 10 \times 10 \times 10 \times 10 \times 10$

 $= 6.5 \times 10^{5}$

The n value is 5 because the decimal point has moved 5 places to the left.

Example 2

Write 0.00029 in standard form.

Solution

 $0.000029 = 2.9 \times 10^{-4}$

The n value is -4 because the decimal point is

moved 4 places to the right.

Example 3

Write 70 thousand in standard form.

70 thousand = $70\ 000$

 $70\ 000 = 7 \times 10^4$

The n value is positive because the decimal

point has moved 4 places to the left.

Student Activity

- 1. write the following numbers in standard form.
 - a) 58 000
 - b) 270 000 00
 - c) 146 thousand
 - d) 2 million
- 2. There are about 10 000 000 000 cells in your brain. Write this number in standard form.
- 3. The earth is 152 000 000 km from the sun.
 - a) How will you read this number?
 - b) Write the number in standard form.

WEEK 5: MONDAY 02/08 TO FRIDAY 06/08 Achievement Indicators

Write numbers in standard form and vice versa (ordinary numbers)

Rules 1. Move the decimal point the same number of places as the power. 2. If the power is negative it is a small number (less than 1) move left. 3. If the power is positive it is a big number (less than 1) move right. 4. Fill the empty spaces with zero. 5. When inputting a very large or small ordinary number in the calculator, it will automatically convert to standard form. When inputting the number as standard form it will generally leave as standard form. 6.0 x 10¹¹ 11 10 9 8 7 6 5 4 3 2 1 = 6 0 0.0 0 0 0 0 0 0 0 0 Converting into a small ordinary number $2.4 \times 10^{-6} = 0.0000024$ Converting into a large ordinary number $5.67 \times 10^9 = 5\,670\,000\,000$ Please check out this video from YouTube explaining the lesson:

https://youtu.be/vbbVJYeQDV4

Example 1

Convert 2.37×10^5 to an ordinary number.

 $2.37 \times 10^5 = 237000$

Move the decimal point 5 places to the right

Example 2

Convert 7×10^4 to ordinary number.

 $7 \times 10^4 = 70\ 000$

Move the decimal point 4 places to the right

Example 3

Convert 7.13×10^{-3} to ordinary number.

 $7.13 \times 10^{-3} = 0.00713$

Move the decimal point 3 places to the left and

fill the empty spaces with zero.

Student Activity

- 1. Convert the following numbers to ordinary form.
 - a) 1.204×10^3
 - b) 8.9×10^{-5}
 - c) 6.72×10^{-7}
- 2. The speed of light is $3 \times 10^8 m/s$. What is this as an ordinary number.
- An aeroplane has travelled approximately
 3.5 × 10⁵ km in the past 6 months. Convert this distance as an ordinary number.

1.	Convert between the units of length							
	a) 90 mm = cm							
	b) (b) 67,000,000 mm = km						
	c) 9.2 mm = cm							
2.	Conve	rt the following						
	a)) 25 g =	mg					
	b) 10 kg =	tonn	es				
3.	Comp	lete the table						
				-	2		1	
		Kilograms	1	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{1}{4}$		
		Grams	1000					
4.	A container of a powdered fruit drink mix has a mass of 1.25 kilograms. What is that mass in						s of 1.25 kilograms. What is that mass in	
	mingi	rams ?						
5	Write in standard form							
	a) 70×10^5							
	b) 40×10^5							
6	c)	0.8 × 10 ⁶	f notat -	1 6	a o mara at -	d 4111-1	a timos more of them. How more tong of	
6	Peter j	es has he harves	or potato sted?	bes and I	narveste	a twelv	e times more of them. How many tons of	
	potatoes has ne hai vesteu :							

WORKSHEET