TECHNICAL DRAWING

<u>YEAR 13</u>

WEEK 1

<u>DATE - 5/7 - 9/7</u>

STRAND	CHAPTER 1 GEOMETRY
SUB STRAND	Cams
OUTCOME	Define CAMS
REFERENCE	Txt Bk. Pg. 30

A **cam** is a component on which a particular profile has been machined. The profile of the cam imparts (causes) a follower to move in a particular way. As the shaft is rotated the cam rotates with it causing the follower to move up and down.

Cams fall into two main categories:

Plate / Face cams and Cylindrical Cams

1. <u>The plate cam</u> is merely a flat disc that has had a certain shape (or profile) machined on to it. The follower is placed in contact with this profile and as the cam is rotated the profile of it translates into a particular movement of the follower usually up and down.

The face cam is a disc that has a groove machined into its face and a roller follower is used to follow the groove as the cam rotates.

2. <u>The cylinder or drum cam</u> is a cylinder that has had a profile machined onto it and as the cam rotates the profile imparts a particular motion on its follower.

TECHNICAL DRAWING

<u>YEAR 13</u>

WEEK 2

<u>DATE - 12/7 - 16/7</u>

STRAND	CHAPTER 1 GEOMETRY
SUB STRAND	Cams
OUTCOME	Types of Follower
REFERENCE	Txt Bk. Pg. 31

Types of follower:

There are three main types of follower:

- 1. The knife edge follower
- 2. The roller follower
- 3. The flat follower

Knife edge follower	Roller follower	Flat follower
2		

INDUSTRIAL ARTS DEPARTMENT 2

TECHNICAL DRAWING

<u>YEAR 13</u>

WEEK 3

<u>DATE -19/7 – 23/7</u>

STRAND	CHAPTER 1 GEOMETRY
SUB STRAND	Cams
OUTCOME	Construct a Cam Profile
REFERENCE	Txt Bk. Pg. 31

Worked Example:

Draw the cam profile for following conditions:

Displacement diagram

Steps to solve example of the CAM profile

- 1. Construct base circle of 50mm radius.
- 2. Mark points 1, 2, 3....in direction opposite to the direction of cam rotation.
- 3. Transfer points a, b, c....l from displacement diagram to the cam profile
- 4. Join them by a smooth free hand curve.

This forms the required cam profile

TECHNICAL DRAWING

<u>YEAR 13</u>

WEEK 4

<u>DATE -26/7 - 30/7</u>

STRAND	CHAPTER 1 GEOMETRY
SUB STRAND	Cams
OUTCOME	Construct a Cam Profile
REFERENCE	Txt Bk. Pg. 31

Example Solution

Please study the example solution shown below to be able to answer the exercise that follow.

Cam profile: Construct base circle

Note: Internet Youtube search has also video of this exercise and will assist for better understanding.

TECHNICAL DRAWING

<u>YEAR 13</u>

WEEK 5

<u>DATE -2/8 - 6/8</u>

STRAND	CHAPTER 1 GEOMETRY
SUB STRAND	Cams
OUTCOME	Construct an offset Cam Profile
REFERENCE	Txt Bk. Pg. 32

Exercise

Given the Displacement graph drawn for one revolution, you are required to draw the **cam profile** for the same operating condition with the follower **offset by 10 mm** to the left of cam center.

