Sangam SKM College - Nadi
 Lesson notes- Week 1
 Year 11
 Mathematics

Strand	Coordinate Geometry
Sub Strand	Find distance between two points, Find the midpoint, Determine equation of a line
Content learning outcome	At the end of the lesson, students should be able to • identify the distance formula and calculate the distance between two points, use the formula and find the midpoint, determine the gradient from two given points, find equation of a line from y intercept and gradient.

Distance Formula

To find the distance between any two points:

1. Use $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
2. Label the ordered pairs.
3. Substitute the values into the formula.
4. Use order of operations to simplify.

Examples:

Find the distance between the two points, $(4,5) \quad(2,6)$

$$
d=\sqrt{\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) .}
$$

Midpoint Formula

To find the middle of a segment that connects two points.

1. Use $m p=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
2. Label the ordered pairs $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.
3. Substitute the values into the formula.
4. Use order of operations to simplify.

Examples:
Find the midpoint of $(-14,-4) \&(1,8)$

$$
\begin{aligned}
&\left(x_{1}, y_{1}\right) \quad\left(x_{2}, y_{2}\right) \\
& m p=\left(\frac{-14+1}{2}, \quad \frac{-4+8}{2}\right)=(6.5,2)
\end{aligned}
$$

Finding Slope (or Gradient) from 2 Points

What is the slope (or gradient) of this line?

The formula is:

$$
\text { Slope } \boldsymbol{m}=\frac{\text { change in } \mathrm{y}}{\text { change in } \mathrm{x}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Example:

For the above line, the two points are $(2,3)$ and $(6,4)$.

$$
\left(x_{1}, y_{1}\right) \quad\left(x_{2}, y_{2}\right) .
$$

$$
\text { Slope } \boldsymbol{m}=\frac{\text { change in } \mathrm{y}}{\text { change in } \mathrm{x}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-3}{6-2}=\frac{1}{4}
$$

Finding an Equation from 2 Points

Now you know how to find the slope, let us look at finding a whole equation.

What is the equation of this line?

The easiest method is to start with the "point-slope" formula:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

We can choose any point on the line as being point " 1 ", so let us just use point $(2,3)$:

$$
y-3=m(x-2)
$$

Use the formula from above for the slope " m ":

$$
\text { Slope } \boldsymbol{m}=\frac{\text { change in } \mathrm{y}}{\text { change in } \mathrm{x}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-3}{6-2}=\frac{1}{4}
$$

And we have:

$$
y-3=\frac{1}{4}(x-2)
$$

That is an acceptable answer, but we could simplify it further:

$$
\begin{gathered}
y-3=\frac{x}{4}-\frac{1}{2} \\
y-3+3=\frac{x}{4}-\frac{1}{2}+3 \\
y=\frac{x}{4}+\frac{5}{2}
\end{gathered}
$$

Exercise

Year 11 Mathematics
Ex 5.1 (page 117)
Q1, Q2, Q6, Q7, Q9

Sangam S.K.M College- Nadi

Lesson Notes: Week 2
Year 11
Mathematics - Applied
Strand 5: Co-ordinate Geometry
Sub-strand: Parallel Lines

Content Learning Outcomes:

- Determine gradient and equation of parallel lines

Parallel Lines

$>$ Parallel lines are lines which are always the same distance apart and never meet.
$>$ Parallel lines have the same gradient $\left(\mathrm{m}_{1}=\mathrm{m}_{2}\right)$.
$>$ General form of the equation: $y=m_{1} x+c$, where m_{1} is the gradient and c represents the y-intercept .
$>$ Another method is using 2-point formula $y-y_{1}=m_{1}\left(x-x_{1}\right)$ where m_{1} is the gradient and $\left(x_{1}, y_{1}\right)$ are the co - ordinates.
$>$ Graphically:

Example: 1

What is the slope of a line parallel to $2 y=-10 x-8$?
Solution: make y the subject to find m_{1}.

$$
\begin{aligned}
& 2 y=-10 x-8 \\
& y=\frac{-10 x-8}{2} \\
& y=-5 x-4
\end{aligned}
$$

where
 gradient of parallel line.

Example: 2

What is the equation of a line that passes through the point $(-3,2)$ and is parallel to $4 x=2 y+12$?

Solution

Step1: Make y the subject to find the gradients m_{1}.

$$
\begin{aligned}
& 4 x=2 y+12 \\
& 4 x-12=2 y \\
& \frac{4 x-12}{2}=y
\end{aligned}
$$

$m_{1}=2$
Step 2: Use 2- point formula and $\boldsymbol{m}_{\boldsymbol{1}}$ to find equation of parallel line.

$$
\begin{aligned}
& y-y_{1}=m_{2}\left(x-x_{1}\right) \\
& y+2=2(x--3) \\
& y+2=2(x+3) \\
& y+2=2 x+6-2 \\
& y=2 x+4
\end{aligned}
$$

Therefore the equation of parallel line is : $\quad \boldsymbol{y}=\mathbf{2 x}+\mathbf{4}$

Example: 3

Find the equation of the line which is parallel to $y=-2 x+44$ and passes through the point $(-22,0)$.
Step 1 : Identify the information given.

$$
m_{1}=-2 \text { and the given co-ordinates }(-22,0)
$$

Step 2: Use 2-point formula and $\boldsymbol{m}_{\mathbf{1}}$ to find equation of parallel line.

$$
\begin{aligned}
& y-y_{1}=m_{2}\left(x-x_{1}\right) \\
& y-0=-2(x--22) \\
& y=-2(x+22) \\
& y=-2 x-44 \\
& y=-2 x-44
\end{aligned}
$$

Therefore the equation of parallel line is: $\quad \boldsymbol{y}=\mathbf{- 2 x} \boldsymbol{- 4 4}$

Activity

1. What is the equation of a line that passes through the point $(4,-5)$ and is parallel to $3 x+2 y=12$?
2. What is the equation of a line that is parallel to $y=-4$ and passes through the point $(3,7)$?
3. Write the equation of a line that is parallel to $4 x+2 y=-8$ and has the same y-intercept as

$$
-3 y=-2 x-9 ?
$$

Sangam S.K.M College- Nadi
 Lesson Notes: Week 3
 Year 11
 Mathematics - Applied

Strand 5: Co-ordinate Geometry
Sub-strand: Perpendicular Lines

Content Learning Outcomes:

- Determine gradient and equation of perpendicular lines

Perpendicular Lines

$>$ Perpendicular simply means 'at right angle'.
$>$ A line is perpendicular to another if they meet at $\mathbf{9 0}$ degrees.
$>$ Graphically:

$>$ Two lines are perpendicular if the product of gradient is negative one that is:

$$
m_{1} m_{2}=-1
$$

\Rightarrow After rearranging the formula m_{2} can be written as $\quad m_{2}=\frac{-1}{m_{1}}$
$>$ General form of the equation: $\quad y-y_{1}=m_{2}\left(x-x_{1}\right)$ where m_{2} is the gradient of perpendicular line and $\left(x_{1}, y_{1}\right)$ are the co - ordinates.
$>$ Slope is also known as gradient.

Example: 1

What is the slope of a line perpendicular to $3 y=-12 x-9$?
Solution: make y the subject to find m_{1}.

$$
\begin{aligned}
& 3 y=-12 x-9 \\
& y=\frac{-12 x-9}{3} \\
& y=-4 x-3
\end{aligned}
$$

where $m_{1}=-4 \longrightarrow \quad$ Parallel line gradient

$$
m_{2}=\frac{-1}{m_{1}}=\frac{-1}{-4}=\frac{1}{4} \longrightarrow \text { Perpendicular line gradient }
$$

Example: 2

What is the equation of a line that passes through the point $(-2,3)$ and is perpendicular to $3 x=2 y+10$?

Solution

Step1: Make y the subject to find the gradients m_{1} and m_{2}.

$$
\begin{aligned}
& 3 x=2 y+10 \\
& 3 x-10=2 y \\
& \frac{3 x-10}{2}=y \\
& m_{1}=\frac{3}{2} \text { and } \quad m_{2}=\frac{-1}{m_{1}}=-1 \div \frac{3}{2}=\frac{-2}{3}
\end{aligned}
$$

Step 2: Use 2- point formula and $\boldsymbol{m}_{\mathbf{2}}$ to find equation of perpendicular line.

$$
\begin{aligned}
& y-y_{1}=m_{2}\left(x-x_{1}\right) \\
& y-3=\frac{-2}{3}(x--2) \\
& y-3=\frac{-2}{3}(x+2) \\
& y-3=\frac{-2}{3} x-\frac{4}{3}+3
\end{aligned}
$$

Therefore the equation of perpendicular line is : $\quad y=\frac{-2}{3} x+\frac{5}{3}$

Activity

1. What is the slope of a line perpendicular to $2 y=-6 x-10$?
2. What is the equation of a line that passes through the point $(-1,-2)$ and is perpendicular to $-5 x=6 y+18$?
3. A line passes through a point $(2,5)$ and has a slope of -3 . What is the equation of a line perpendicular to this line through $(2,5)$?
