## Sangam SKM College – Nadi Lesson notes- Week 1 Year 11 Mathematics

| Strand                   | Coordinate Geometry                                                                                                                                                                                                                                                                                        |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sub Strand               | Find distance between two points, Find the midpoint, Determine equation of a line                                                                                                                                                                                                                          |
| Content learning outcome | <ul> <li>At the end of the lesson, students should be able to</li> <li>identify the distance formula and calculate the distance between two points, use the formula and find the midpoint, determine the gradient from two given points, find equation of a line from y intercept and gradient.</li> </ul> |

### **Distance Formula**

To find the distance between any two points:

- 1. Use  $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- 2. Label the ordered pairs.
- 3. Substitute the values into the formula.
- 4. Use order of operations to simplify.

# **Examples:**

Find the distance between the two points, (4, 5) (2, 6)

$$\frac{(x_1, y_1)}{(x_2, y_2)} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(2 - 4)^2 + (6 - 5)^2} = \sqrt{(-2)^2 + (1)^2} = \sqrt{5}$$

### **Midpoint Formula**

To find the middle of a segment that connects two points.

- 1. Use  $mp = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
- 2. Label the ordered pairs  $(x_1, y_1)$  and  $(x_2, y_2)$ .
- 3. Substitute the values into the formula.
- 4. Use order of operations to simplify.

#### **Examples:**

Find the midpoint of (-14, -4) & (1, 8)

 $(x_1, y_1)$ 

$$(x_2, y_2).$$
  
 $mp = \left(\frac{-14+1}{2}, \frac{-4+8}{2}\right) = (6.5, 2)$ 

### Finding Slope (or Gradient) from 2 Points

What is the slope (or gradient) of this line?



### **Example:**

For the above line, the two points are (2,3) and (6,4).

$$(x_1, y_1)$$
  $(x_2, y_2).$ 

Slope 
$$m = \frac{\text{change in y}}{\text{change in x}} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 3}{6 - 2} = \frac{1}{4}$$

#### **Finding an Equation from 2 Points**

Now you know how to find the **slope**, let us look at finding a whole **equation**.



What is the equation of this line?

The easiest method is to start with the "point-slope" formula:  $y - y_1 = m(x - x_1)$ 

We can choose any point on the line as being point "1", so let us just use point (2,3): y - 3 = m(x - 2)Use the formula from above for the slope "m": Slope  $m = \frac{\text{change in y}}{\text{change in x}} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 3}{6 - 2} = \frac{1}{4}$ 

And we have:

$$y - 3 = \frac{1}{4}(x - 2)$$

That is an acceptable answer, but we could simplify it further:

$$y - 3 = \frac{x}{4} - \frac{1}{2}$$
$$y - 3 + 3 = \frac{x}{4} - \frac{1}{2} + 3$$
$$y = \frac{x}{4} + \frac{5}{2}$$

Exercise

Year 11 Mathematics Ex 5.1 (page 117) Q1, Q2, Q6, Q7, Q9

## Sangam S.K.M College- Nadi

Lesson Notes : Week 2

# Year 11

# **Mathematics – Applied**

## Strand 5: Co-ordinate Geometry

## Sub-strand: Parallel Lines

# **Content Learning Outcomes:**

• Determine gradient and equation of parallel lines

# **Parallel Lines**

- > **Parallel lines** are **lines** which are always the same distance apart and never meet.
- > Parallel lines have the same gradient  $(m_1 = m_2)$ .
- Seneral form of the equation:  $y = m_1 x + c$ , where  $m_1$  is the gradient and *c* represents the y-intercept.
- Another method is using 2-point formula  $y y_1 = m_1(x x_1)$  where  $m_1$  is the gradient and  $(x_1, y_1)$  are the co ordinates.
- ➢ Graphically:



# Example: 1

What is the slope of a line parallel to 2y = -10x - 8?

Solution: make y the subject to find  $m_1$ .

$$2y = -10x - 8$$
$$y = \frac{-10x - 8}{2}$$
$$y = -5x - 4$$

where  $m_1 = -5$  \_\_\_\_\_ gradient of parallel line.

## Example: 2

What is the equation of a line that passes through the point (-3,2) and is parallel to 4x = 2y + 12?

#### Solution

**Step1**: Make y the subject to find the gradients  $m_1$ .

$$4x = 2y + 12$$
$$4x - 12 = 2y$$
$$\frac{4x - 12}{2} = y$$

 $m_1 = 2$ 

Step 2: Use 2- point formula and  $m_1$  to find equation of parallel line.

$$y - y_1 = m_2 (x - x_1)$$
  

$$y + 2 = 2(x - -3)$$
  

$$y + 2 = 2(x + 3)$$
  

$$y + 2 = 2x + 6 - 2$$
  

$$y = 2x + 4$$

Therefore the equation of parallel line is : y = 2x + 4

#### Example: 3

Find the equation of the line which is parallel to y = -2x + 44 and passes through the point (-22, 0).

Step 1 : Identify the information given.  $m_1 = -2$  and the given co-ordinates (-22, 0)

Step 2: Use 2- point formula and  $m_1$  to find equation of parallel line.

$$y - y_1 = m_2 (x - x_1)$$
  

$$y - 0 = -2(x - -22)$$
  

$$y = -2(x + 22)$$
  

$$y = -2x - 44$$
  

$$y = -2x - 44$$

Therefore the equation of parallel line is: y = -2x - 44

#### <u>Activity</u>

- 1. What is the equation of a line that passes through the point (4,-5) and is parallel to 3x + 2y = 12?
- 2. What is the equation of a line that is parallel to y = -4 and passes through the point (3, 7)?
- 3. Write the equation of a line that is parallel to 4x + 2y = -8 and has the same y-intercept as -3y = -2x 9?

### Sangam S.K.M College- Nadi

Lesson Notes: Week 3

Year 11

# **Mathematics – Applied**

Strand 5: Co-ordinate Geometry

Sub-strand: Perpendicular Lines

## **Content Learning Outcomes:**

• Determine gradient and equation of perpendicular lines

#### **Perpendicular Lines**

- > Perpendicular simply means 'at right angle'.
- > A line is perpendicular to another if they meet at **90 degrees**.
- ➤ Graphically :



> Two lines are perpendicular if the **product** of **gradient** is **negative one** that is:

$$m_1 m_2 = -1$$

- > After rearranging the formula  $m_2$  can be written as  $m_2 = \frac{-1}{m_1}$
- Seneral form of the equation:  $y y_1 = m_2 (x x_1)$  where  $m_2$  is the gradient of perpendicular line and  $(x_1, y_1)$  are the co ordinates.
- Slope is also known as gradient.

## Example: 1

What is the slope of a line perpendicular to 3y = -12x - 9? Solution: make y the subject to find  $m_1$ .

$$3y = -12x - 9$$
  

$$y = \frac{-12x - 9}{3}$$
  

$$y = -4x - 3$$
  
where  $m_1 = -4$   $\longrightarrow$  Parallel line gradient  
 $m_2 = \frac{-1}{m_1} = \frac{-1}{-4} = \frac{1}{4}$   $\longrightarrow$  Perpendicular line gradient

#### Example: 2

What is the equation of a line that passes through the point (-2,3) and is perpendicular to 3x = 2y + 10?

### Solution

**Step1**: Make y the subject to find the gradients  $m_1$  and  $m_2$ .

$$3x = 2y + 10$$
  

$$3x - 10 = 2y$$
  

$$\frac{3x - 10}{2} = y$$
  

$$m_1 = \frac{3}{2} \text{ and } m_2 = \frac{-1}{m_1} = -1 \div \frac{3}{2} = \frac{-2}{3}$$

Step 2: Use 2- point formula and  $m_2$  to find equation of perpendicular line.

$$y - y_1 = m_2 (x - x_1)$$
  

$$y - 3 = \frac{-2}{3} (x - -2)$$
  

$$y - 3 = \frac{-2}{3} (x + 2)$$
  

$$y - 3 = \frac{-2}{3} x - \frac{4}{3} + 3$$

Therefore the equation of perpendicular line is :  $y = \frac{-2}{3}x + \frac{5}{3}$ 

### <u>Activity</u>

- 1. What is the slope of a line perpendicular to 2y = -6x 10?
- 2. What is the equation of a line that passes through the point (-1,-2) and is perpendicular to -5x = 6y + 18?
- 3. A line passes through a point (2, 5) and has a slope of -3. What is the equation of a line **perpendicular** to this line through (2, 5)?