Sangam Skm College - Nadi 2021

Lesson Notes Week 1

Year 10
Mathematics
Strand 4: Geometry

Sub Strand: Trigonometry

Content Learning Outcome: At the end of this lesson students should be able to:

1. identify the longest side as the hypotenuse.
2. use the Pythagoras Theorem ($\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$) to find the length of the unknown side.
3. use the calculator and find both the squares and square roots.

Lesson Notes

$>$ Trigonometry means ratios of sides of triangles.
$>$ Pythagoras Theorem gives the relationship between the sides of a right-angled triangle.
i.e. $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$
where: c refers to the longest side of the right-angled triangle, and it will always be opposite the right angle
: \boldsymbol{a} and \boldsymbol{b} are the other two sides of the triangle.

$>$ The theorem can also be used to determine whether a triangle is a triangle is a right-angled triangle or not.

Example: find the unknown side of the following triangles given below:

12
Activity

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 5^{2}+12^{2}=x^{2} \\
& 25+144=x^{2} \\
& 169=x^{2} \\
& x^{2}=169 \\
& x=\sqrt{169} \\
& x=13
\end{aligned}
$$

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 9^{2}+b^{2}=15^{2} \\
& 81+b^{2}=225 \text { Taking } 81 \\
& \text { away from both sides gives } \\
& 81+b^{2}-81=225-81 \\
& b^{2}=144 \\
& b=\sqrt{144} \\
& b=12
\end{aligned}
$$

1. Find the missing sides
(a)

24 cm
(b)
11 m

2. A 3 m ladder stands on a horizontal ground and reaches 2.8 m up a vertical wall. How far is the foot of the ladder from the base of the wall?

Sangam Skm College - Nadi
 Lesson Notes Week 2

Year 10
Mathematics
Strand 4: Geometry

Sub Strand: Trigonometry

Content Learning Outcome: At the end of this lesson students should be able to:

1. determine whether a triangle is a right-angled triangle or not. (Pythagorean Traid)
2. identify the sides of the right angled (hypotenuse, opposite, adjacent)

PYTHAGOREAN TRAID

$>$ Given the sides of any triangle you can determine whether it is a right-angled triangle or not using the Pythagoras theorem. i.e. $\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$.
$>$ the largest number squared should equal the addition of the other two sides squared.
Example: show whether the following is a right-angled triangle or not.
a. 3, 4, 5
b. $6,11,8$
$\quad 11^{2}=6^{2}+8^{2}$
$5^{2}=3^{2}+4^{2}$
$121=36+64$
$25=25$

Since the above is equal, it is a right angled triangle
$121 \neq 100$
since the above is not equal, it is not a right angled triangle
$>$ In trigonometry the Greek letter Θ (theta) is used as the name of an angle.
$>$ Using Θ the sides of the triangle can be named as below

- The hypotenuse will always be the longest side and always opposite the 90°
- Adjacent is always close to the theta
- Opposite will always be opposite the theta.

Activity

17
2. Label the following sides of right-angled triangle.

Sangam Skm College - Nadi
 Lesson Notes Week 3
 Year 10
 Mathematics

Strand 4: Geometry

Sub Strand: Trigonometry

Content Learning Outcome: At the end of this lesson students should be able to:

1. find the missing sides of the right-angled triangle using the trigonometry function i.e. SOH CAH TOA 2. use the calculator and find the missing length

TRIGONOMETRIC RATIO

To find the missing side: label the sides given only (A - adjacent, O - opposite, H - hypotenuse) : identify the formula to be used i.e.

$$
\begin{aligned}
& \text { sin }(\theta)=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \tan (\theta)=\frac{\text { opposite }}{\text { adjacent }}
\end{aligned}
$$

Example: find the missing side
Since we have the sides H , O we can use the formula

$$
\begin{aligned}
\sin \theta & =\frac{o}{h} \\
\sin 55 & =\frac{3}{x} \\
x \sin 55 & =\frac{3 x}{x} \quad \text { multiply } x \text { on both sides } \\
x \frac{\sin 55}{\sin 55} & =\frac{3}{\sin 55} \quad \text { divide by } \sin 55 \text { on both sides } \\
x \quad & =3.66
\end{aligned}
$$

Activity

Find the value of the missing side.
a.

c.

