Sangam SKM College - Nadi

Lesson Notes - Week 1

Year 12

Mathematics

Strand : Algebra

Substrand : Graphs

Content Learning Outcome : Study and interpret Quadratic Graph.

Quadratic Graph

- Quadratic graph will have degree 2, i.e the highest power of 2 eg y = x^2
- The graph will be symmetrical about the turning point (vertex)

- To sketch the graph, we can use :
 - 1. Table method
 - 2. Intercept Method for x-intercept let y = 0, for y intercept let x = 0 and

solve

EXAMPLE 1: Sketch graph of y = x² Using tables

Take some x – values, i.e, positive and negative numbers. Substitute those x values to find y

 $y = x^2$ х (x,y) $(-2)^{2} = 4$ -2 (-2, 4)(-1) 2= 1 -1 (-1,1) $(0)^{2} = 0$ 0 (0,0) $(1)^{2}=1$ 1 (1,1) $(-2)^{2} = 4$ 2 (2,4)

Example 2 Sketch the graph of $y = x^2 + x - 2$

Using intercept method

<u>x - intercept (y = 0)</u>	<u>y</u> - intercept $(x = 0)$
$0=x^2+x-2$	$y = x^2 + x - 2$
0 = (x + 2)(x - 1) (Type 1 factorisation)	$y = (0)^2 + 0 - 2$
$0 = x + 2 \qquad 0 = x - 1$	<i>y</i> = - 2
$x = -2 \qquad x = 1$	

Turning Point (Vertex)

Activity

Sketch the following graphs:

1.
$$y = x^2 + 3x + 2$$

2. $f(x) = 3x - x^2$

3. y = (2x - 1)(x - 3)

Sangam SKM College - Nadi

Lesson Notes - Week 2

Year 12

Mathematics

Strand : Algebra

Sub-strand : Graphs

Content Learning Outcome : Study and interpret Cubic Graph.

Cubic Function

- Cubic equation has highest power of 3, e.g $y = x^3$
- To sketch a cubic graph, the intercept method can be used.

G	GRAPH			POSITIVE SHAPE y = + a x ³	NEGATIVE SHAPE y = - a x ³	
	ubic aph	function	/			

Example 1: Find the equation of the graph shown below:

The *x*-intercepts are x = -3, x = 1 and x = 2. Hence take it to the left hand side with the *x*. And the shape of the graph is negative so put a negative sign. Thus the equation will be y = -(x + 3)(x - 1)(x - 2)

Example 2

Give the equation of the cubic graph shown below

The *x*-intercepts are x = -3 and x = 2. And the shape of the graph is positive.

Thus the equation of the graph will be $g(x) = (x - 2)^2(x + 3)$. The repeated factor $(x - 2)^2$ means the graph turns at x = 2

Example 3

Sketch the graph of $y = (x + 2)^2(1 - x)$, showing all the intercepts

$$\begin{array}{ll} \underline{x - \text{intercept}(y = 0)} & \underline{y - \text{intercept}(x = 0)} \\ y = (x + 2)^2(1 - x) & y = (x + 2)^2(1 - x) \\ 0 = (x + 2)^2(1 - x) & y = (0 + 2)^2(1 - 0) \\ (x + 2)^2 = 0 & (1 - x) = 0 & y = 4 \\ x = -2 & x = 1 \end{array}$$

Note: The repeated factor in $y = (x + 2)^2(1 - x)$ is $(x + 2)^2$, that means the graph turns at x = -2 as shown below.

Activity

Give the equation of the cubic functions shown below:

3. Sketch the graph of the cubic function given by the equation $y = x^2(x + 3)$

Sangam SKM College - Nadi

Lesson Notes - Week 3

Year 12

Mathematics

Strand : Algebra

Sub-strand : Graphs

Content Learning Outcome : Study and interpret Hyperbolic Function.

Hyperbolic Graph

• Hyperbola will have a basic form of x y = c, where c is a constant. Making y the subject yields: $y = \frac{c}{x}$. Table of values method can be used to sketch the graph.

- The **rectangular form** of a hyperbola is given by: $y = \frac{ax + b}{cx + d}$
- <u>Steps to sketch:</u>
 - 1. *x intercept* let numerator = 0 and solve , i.e ax + b = 0
 - 2. *y intercept* let x = 0 and solve
 - 3. *Vertical asymptote* let denominator = 0 and solve, i.e. cx + d = 0
 - 4. *Horizontal asymptote* divide the coefficients of the variable x, i.e. $y = \frac{a}{c}$
- Asymptotes are dotted lines that the graph will never cross.

Example 1 : Sketch the graph of $y = \frac{2}{x}$

	x	$y = \frac{2}{x}$	(x,y)
	-2	$\frac{2}{-2} = -1$	(-2,-1)
-	-1	$\frac{2}{-1} = -2$	(-1,-2)
	0	$\frac{2}{0} = undefined$	-
	1	$\frac{2}{1} = 2$	(1,2)
	2	$\frac{2}{2} = 1$	(2,1)

Example 2: A function is given as $g(x) = 2 - \frac{3x}{x-1}$ (i) Express g(x) in the form $y = \frac{ax+b}{cx+d}$ Make denominator the same $g(x) = 2 - \frac{3x}{x-1}$ $= \frac{2}{1} \frac{3x}{x-1}$ Cross multiply $= \frac{2(x-1)-3x(1)}{(x-1)}$ Distributive law Why? and simplify $= \frac{2x-2-3x}{(x-1)}$ $\therefore g(x) = \frac{-x-2}{x-1}$

(ii) Find the x and y intercepts

(iii) State the equation of the vertical and horizontal asymptotes

Vertical asymptote (denominator = 0)Horizontal Asympyotex - 1 = 0 $y = \frac{a}{c}$ x = 1 $y = \frac{-1}{1}$ $y = \frac{-1}{1}$ y = -1

(iv) Hence sketch the graph of g(x)

Activity

