Sangam SKM College - Nadi

Lesson Notes - Week 1

Year 12

Mathematics

Strand: Algebra
Substrand : Graphs
Content Learning Outcome : Study and interpret Quadratic Graph.

Quadratic Graph

- Quadratic graph will have degree 2, i.e the highest power of 2 eg $\mathrm{y}=x^{2}$
- The graph will be symmetrical about the turning point (vertex)

POSITIVE SHAPE $\left(\mathrm{y}=a x^{2}\right)$	NEGATIVE SHAPE $\left(\mathrm{y}=-a x^{2}\right)$

- To sketch the graph, we can use :

1. Table method
2. Intercept Method - for x-intercept let $\mathrm{y}=0$, for y - intercept let $\mathrm{x}=0$ and solve

EXAMPLE 1: Sketch graph of $y=x^{2}$ Using tables

Take some x - values, i.e, positive and negative numbers.

Substitute those x values to find y

x	$y=x^{2}$	(x, y)
-2	$(-2)^{2=}$	$(-2,4)$
-1	$(-1)^{2=1}$	$(-1,1)$
0	$(0)^{2}=0$	$(0,0)$
1	$(1)^{2}=1$	$(1,1)$
2	$(-2)^{2}=4$	$(2,4)$

Example 2 Sketch the graph of $y=x^{2}+x-2$

Using intercept method

$$
\begin{array}{ll}
\frac{x-\operatorname{intercept}(y=0)}{} & y-\text { intercept }(x=0) \\
0=x^{2}+x-2 \\
0=(x+2)(x-1) \quad(\text { Type 1 factorisation) } & y=x^{2}+x-2 \\
0=x+2 \quad 0=x-1 & y=(0)^{2}+0-2 \\
& y=-2
\end{array}
$$

Turning Point (Vertex)

$$
x=\frac{x_{1}+x_{2}}{2}=\frac{-2+1}{2}=\frac{-1}{2}
$$

$$
\begin{aligned}
y & =x^{2}+x-2 \\
y & =(-0.5)^{2}+(-0.5)-2 \\
y & =-2.25
\end{aligned}
$$

Turning point

Activity
Sketch the following graphs:

1. $\mathrm{y}=x^{2}+3 x+2$
2. $f(x)=3 x-x^{2}$
3. $y=(2 x-1)(x-3)$

Sangam SKM College - Nadi

Lesson Notes - Week 2

Year 12

Mathematics

Strand: Algebra
Sub-strand : Graphs
Content Learning Outcome : Study and interpret Cubic Graph.

Cubic Function

- Cubic equation has highest power of 3 , e.g $y=x^{3}$
- To sketch a cubic graph, the intercept method can be used.

GRAPH	POSITIVE SHAPE $y=+a x^{3}$	NEGATIVE SHAPE $y=-a x^{3}$
Cubic graph		

Example 1: Find the equation of the graph shown below:

The x-intercepts are $x=-3, x=1$ and $x=2$. Hence take it to the left hand side with the x. And the shape of the graph is negative so put a negative sign. Thus the equation will be $y=-(x+3)(x-1)(x-2)$

Example 2

Give the equation of the cubic graph shown below

The x-intercepts are $x=-3$ and $x=2$. And the shape of the graph is positive.

Thus the equation of the graph will be $g(x)=(x-2)^{2}(x+3)$. The repeated factor $(x-2)^{2}$ means the graph turns at $x=2$

Example 3

Sketch the graph of $y=(x+2)^{2}(1-x)$, showing all the intercepts

x-intercept $(y=0)$

$y=(x+2)^{2}(1-x)$
$0=(x+2)^{2}(1-x)$
$(x+2)^{2}=0 \quad(1-x)=0$
$x=-2 \quad x=1$

$$
y \text {-intercept }(x=0)
$$

$$
y=(x+2)^{2}(1-x)
$$

$$
y=(0+2)^{2}(1-0)
$$

$$
y=4
$$

Note: The repeated factor in $y=(x+2)^{2}(1-x)$ is $(x+2)^{2}$, that means the graph turns at $x=-2$ as shown below.

Activity

Give the equation of the cubic functions shown below:
1.

2.

3. Sketch the graph of the cubic function given by the equation $y=x^{2}(x+3)$

Sangam SKM College - Nadi

Lesson Notes - Week 3

Year 12

Mathematics

Strand: Algebra
Sub-strand : Graphs
Content Learning Outcome : Study and interpret Hyperbolic Function.

Hyperbolic Graph

- Hyperbola will have a basic form of $\boldsymbol{x} \boldsymbol{y}=\boldsymbol{c}$, where c is a constant. Making y the subject yields: $\boldsymbol{y}=\frac{\boldsymbol{c}}{\boldsymbol{x}}$. Table of values method can be used to sketch the graph.

- The rectangular form of a hyperbola is given by: $\boldsymbol{y}=\frac{a x+\boldsymbol{b}}{\boldsymbol{c x + d}}$
- Steps to sketch:

1. x - intercept - let numerator $=0$ and solve, i.e $\quad a x+b=0$
2. y - intercept - let $x=0$ and solve
3. Vertical asymptote - let denominator $=0$ and solve, i.e $c x+d=0$
4. Horizontal asymptote - divide the coefficients of the variable x, i.e $y=\frac{a}{c}$

- Asymptotes are dotted lines that the graph will never cross.

Example 1 : Sketch the graph of $y=\frac{2}{x}$

x	$y=\frac{2}{x}$	(x, y)
-2	$\frac{2}{-2}=-1$	$(-2,-1)$
-1	$\frac{2}{-1}=-2$	$(-1,-2)$
0	$\frac{2}{0}=$ undefined	-
1	$\frac{2}{1}=2$	$(1,2)$
2	$\frac{2}{2}=1$	$(2,1)$

(i) Express $g(x)$ in the form $y=\frac{a x+b}{c x+d}$

Make denominator the same

$$
\begin{aligned}
& g(x)=2-\frac{3 x}{x-1} \\
& =\frac{2 x}{1} \frac{3 x}{x-1} \\
& \text { cross multiply } \\
& =\frac{2(x-1)-3 x(1)}{(x-1)}
\end{aligned}
$$

Distributive Iaw
why?
and simplify

$$
=\frac{2 x-2-3 x}{(x-1)}
$$

$$
\therefore g(x)=\frac{-x-2}{x-1}
$$

(ii) Find the x and y intercepts
\underline{x}-intercept (numerator $=0$) $\quad y$-intercept $(x=0)$

$$
\begin{aligned}
-x-2 & =0 \\
x & =\mathbf{- 2}
\end{aligned}
$$

$$
\begin{aligned}
g(x) & =\frac{-x-2}{x-1} \\
& =\frac{-0-2}{0-1} \\
y & =2
\end{aligned}
$$

(iii) State the equation of the vertical and horizontal asymptotes

Vertical asymptote (denominator $=0$)

$$
\begin{aligned}
x-1 & =0 \\
x & =\mathbf{1}
\end{aligned}
$$

Horizontal Asympyote

$$
\begin{aligned}
& y=\frac{a}{c} \\
& y=\frac{-1}{1} \quad y=-1
\end{aligned}
$$

(iv) Hence sketch the graph of $g(x)$

Activity

Sketch the given hyperbolic functions :

1. $y=\frac{x+1}{x-2}$
2. $y=\frac{x-3}{x+1}$
3. $y=\frac{4}{x-2}+3$
