Sangam SKM College - Nadi

Lesson Notes: Week 1

Year 13

Mathematics

Strand: Algebra

Sub Strand: Sequences

Content Learning Outcome: Study partial sum, convergence and divergence of sequences.

SEQUENCES

- Sequence is an ordered list of numbers for e.g. $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$
- Series is obtained by adding terms in a sequence for e.g. $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$
- Partial sum, S_n is the sum of a finite number of consecutive terms beginning with the first term.

 $S_1 = T_1 \qquad (T_1 \ is \ the \ first \ term)$ $S_2 = T_1 + T_2$ $S_3 = T_1 + T_2 + T_3$

• Sequences which approach a definite value are said to <u>converge</u>. If a sequence has a limit, we say the sequence is convergent and the sequence converges to a limit. Otherwise, the sequence is divergent.

Example 1:

A sequence is defined by $T_n = 3n$

a) Find the first four terms of this b) Write as partial sum. sequence. $S_1 = 3$ $T_n = 3n$ $S_2 = 3 + 6 = 9$ $T_1 = 3(1) = 3$ $S_3 = 9 + 9 = 18$ $T_2 = 3(2) = 6$ $S_4 = 18 + 12 = 30$ $T_3 = 3(3) = 9$ $T_4 = 3(4) = 12$ The sequence of partial sum are *The terms of the sequence are* <3. 9. 18, 30, ... > <3. 6. 9. 12. ... >

Example 2:

Determine whether the sequence $a_n = \frac{6n+3}{n-8}$ converge or diverge, and if it converges, give the value to which it converges to.

 $\lim_{n \to \infty} \frac{6n+3}{n-8} = 6 \text{ (using L'Hopital's Rule)}$

Thus, it is a converging sequence and it converges to 6.

Example 3:

A sequence $\langle a_n \rangle$ is defined by $a_n = 2n + 1$

- a) List the first four terms The first four terms of the sequence $2n + 1 = \langle 3, 5, 7, 9, ... \rangle$
- b) What is the limit of this sequence? $= \lim_{n \to \infty} 2n + 1$ $= 2\infty + 1$ $= \infty$
- c) Determine whether the sequence converge or diverge.
 The terms of the sequence increase without bounds (goes to infinity) so the sequence diverges.
 Note: If the limit is infinity, the sequence diverges.

<u>Note</u>: If the limit is infinity, the sequence diverges.

Activity: Year 13 Mathematics textbook page 131: Exercise 6.1.1 - Questions 1, 3, 5

- 1. A sequence $\langle a_n \rangle$ is defined by $a_n = \frac{7n+3}{n-9}$
 - a) Find the first four terms of the sequence.
 - b) Find the first three terms of the sequence of partial sums.
 - c) Find $\lim_{n \to \infty} \frac{7n+3}{n-9}$
 - d) Explain why the sequence converges.
- 5. A sequence $\langle a_n \rangle$ is defined by $a_n = 3n + 4$ Does it converge or diverge. Explain

- 3. A sequence $\langle a_n \rangle$ is defined by $a_n = \frac{n+2}{n^2}$
 - a) Find the first two terms of the sequence of partial sums.
 - b) Determine whether a sequence converges or diverges, and if it converges, give the value to which it converges to.

Sangam SKM College - Nadi

Lesson Notes: Week 2

Year 13

Mathematics

Strand: Algebra

Sub Strand: Binomial Theorem

Content Learning Outcome: Use Binomial Theorem to expand expressions of the form $(x + a)^n$.

BINOMIAL THEOREM

• <u>FACTORIAL</u> - The factorial of a number (symbol n!) is defined as:

 $n! = n x (n - 1) x (n - 2) x (n - 3) x ... x 3 x 2 x 1, n \in N$

Note: n! is read as "n factorial"

e.g. 5! =5 x 4 x 3 x 2 x 1 = 120

(This can be directly found using the calculator which has the key ! Press 5! =)

• <u>COMBINATIONS</u> n_{c_r} or $\binom{n}{r}$ - a combination is a selection of a certain number of elements from a set where the order of elements is not taken into account. The number of possible combinations of "r" elements from "n" things is denoted by:

$$\binom{n}{r} = \frac{n!}{(n-r)! r!}$$

 $\binom{10}{6} = \frac{10!}{(10-6)! \cdot 6!} = 210$ (This can also be found using the n_{c_r} key on the calculator Press 10 $n_{c_r} 6 = 1$)

• **BINOMIAL THEOREM**

The binomial theorem provides a useful method for raising any binomial to a nonnegative integral power:

$$(x+a)^{n} = \binom{n}{0} x^{n-0} a^{0} + \binom{n}{1} x^{n-1} a^{1} + \binom{n}{2} x^{n-2} a^{2} + \dots + \binom{n}{n} x^{n-n} a^{n}$$

Example 1: Expand $(x + a)^3$ using the binomial theorem.

$$(x + a)^{3} = {3 \choose 0} x^{3-0} a^{0} + {3 \choose 1} x^{3-1} a^{1} + {3 \choose 2} x^{3-2} a^{2} + {3 \choose 3} x^{3-3} a^{3}$$

= 1. x³. 1 + 3. x². a + 3. x¹. a² + 1. 1. a³
= x³ + 3x²a + 3x a² + a³

Note: the power of x decreases from n to 0 while the power of a increases from 0 to n.

Example 2: Expand $(2x - \frac{1}{x^2})^3$ using the binomial theorem $(2x - \frac{1}{x^2})^3 = \binom{3}{0}(2x)^3(-\frac{1}{x^2})^0 + \binom{3}{1}(2x)^2(-\frac{1}{x^2})^1 + \binom{3}{2}(2x)^1(-\frac{1}{x^2})^2 + \binom{3}{3}(2x)^0(-\frac{1}{x^2})^3$ $= 1.8x^3.1 + 3.4x^2.(-\frac{1}{x^2}) + 3.2x.(\frac{1}{x^4}) + 1.1.(-\frac{1}{x^6})$ $= 8x^3 - 12 + \frac{6}{x^3} - \frac{1}{x^6}$

Example 3: Write down the first four terms in the expansion of $(2x + y^2)^9$

$$(2x + y^{2})^{9} = {9 \choose 0} (2x)^{9} (y^{2})^{0} + {9 \choose 1} (2x)^{8} (y^{2})^{1} + {9 \choose 2} (2x)^{7} (y^{2})^{2} + {9 \choose 3} (2x)^{6} (y^{2})^{3} + \dots$$

= 1.(2x)⁹.1 + 9.(2x)⁸.y² + 36.(2x)⁷.y⁴ + 84.(2x)⁶.y⁶ + ...
= 512 x⁹ + 2304 x⁸ y² + 4608 x⁷ y⁴ + 5376 x⁶ y⁶ + ...

Activity:

- 1. Use the binomial theorem to expand and simplify $(x + y)^4$
- 2. Expand and simplify $(2x \frac{1}{2})^4$
- 3. Use the binomial theorem to find the first three terms of $\left(2x \frac{1}{x}\right)^5$

Sangam SKM College – Nadi

Lesson Notes: Week 3

Year 13

Mathematics

Strand: Algebra

Sub Strand: Binomial Theorem

Content Learning Outcome: Use general term formula to find particular term.

General Term Formula: $T_{r+1} = {n \choose r} x^{n-r} a^r$

The $(r + 1)^{\text{th}}$ term which is the general term is given by $T_{r+1} = \binom{n}{r} x^{n-r} a^r$ and $\binom{n}{r}$ is the binomial coefficient.

Example: A term in an expansion of $(a + b)^n$ is $\binom{p}{k} (x^2)^3 (-\frac{2}{x})^5$.

Find a, b, n, p and k.

 $a = x^2$ $b = -\frac{2}{x}$ k = 5 n = p = 8

Finding a Particular Term

Example 1:

Find the fourth term in the expansion of $(x - \frac{2}{x})^{8}$ $T_{r+1} = {n \choose r} x^{n-r} a^{r}$

For the fourth term, r = 3

$$T_{(3+1)} = {\binom{8}{3}} x^{8-3} \left(-\frac{2}{x}\right)^{3}$$
$$= 56. \ x^{5} \cdot \frac{-8}{x^{3}}$$
$$T_{4} = -448 \ x^{2}$$

Example 2: What is the third term of $(a - 3)^{10}$? $T_{r+1} = {n \choose r} x^{n-r} a^r$ For the third term, r = 2 $T_{(2+1)} = {10 \choose 2} a^{10-2} (-3)^2$ $= 45. a^8 \cdot 9$ $T_3 = 405 a^8$

Finding the Coefficient

Example 1: Find the coefficient of x^4 in the expansion of $(x + 1)^{10}$

$$T_{(r+1)} = {\binom{10}{r}} x^{10-r} (1)^r$$

To solve for r: $x^{10-r} = x^4$ 10 - r = 4r = 6

replace r with 6

$$= {10 \choose 6} x^{10-6} (1)^{6}$$
$$= 210 \cdot x^{4} \cdot 1$$
$$= 210x^{4}$$

∴ coefficient is 210

Example 2:

Find the coefficient of x^3y^4 in the expansion of $(x + 2y)^7$ $T_{(r+1)} = {7 \choose r} x^{7-r} (2y)^r$ To solve for r: $x^{7-r} = x^3$ 7-r=3r=4replace r with 4 $= {7 \choose 4} x^{7-4} (2y)^4$ $= 35. x^3. 16y^4$ $= 560 x^3 y^4$ \therefore coefficient is 560

Finding Constant Term (term independent of *x*)

Example 1: Find the term independent of x in
the expansion of
$$(x - \frac{8}{3})^6$$
.Example 2: Find the constant term in the
expansion of $(x + \frac{1}{x})^8$.
 $T_{(r+1)} = \binom{6}{r} x^{6-r} (-\frac{8}{3})^r$ True $\binom{8}{r} x^{8-r} (\frac{1}{x})^r$ To solve for r: $x^{6-r} = x^0$
 $6-r = 0$
 $r = 6$ To solve for r: $x^{8-r} \cdot x^{-r} = x^0$
 $8-r - r = 0$
 $r = 4$ $= \binom{6}{6} x^{6-6} (-\frac{8}{3})^6$ $= \binom{8}{4} x^{8-4} (\frac{1}{x})^4$ $= 1.1.\frac{262144}{729}$ $= 70.x^4.\frac{1}{x^4}$ $= \frac{262144}{729}$ \div Constant term is $\frac{262144}{729}$

Activity:

- 1. Find the fourth term in the expansion of $(5 + x)^6$
- 2. Find the coefficient of x^4 in the expansion of $(1 2x)^9$
- 3. Find the term independent of x in the expansion of $(3x^2 \frac{1}{r})^{12}$