Sangam SKM College - Nadi

Lesson Notes: Week 1

Year 13

Mathematics

Strand: Algebra
Sub Strand: Sequences
Content Learning Outcome: Study partial sum, convergence and divergence of sequences.

SEQUENCES

- Sequence is an ordered list of numbers for e.g. $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$
- Series is obtained by adding terms in a sequence for e.g. $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots$
- Partial sum, S_{n} is the sum of a finite number of consecutive terms beginning with the first term.

$$
\begin{aligned}
& S_{1}=T_{1} \quad\left(T_{1} \text { is the first term }\right) \\
& S_{2}=T_{1}+T_{2} \\
& S_{3}=T_{1}+T_{2}+T_{3}
\end{aligned}
$$

- Sequences which approach a definite value are said to converge.

If a sequence has a limit, we say the sequence is convergent and the sequence converges to a limit. Otherwise, the sequence is divergent.

Example 1:

A sequence is defined by $T_{n}=3 n$
a) Find the first four terms of this sequence.
$T_{n}=3 n$
$T_{1}=3(1)=3$
$T_{2}=3(2)=6$
$T_{3}=3(3)=9$
$T_{4}=3(4)=12$
The terms of the sequence are $<3,6,9,12, \ldots>$
b) Write as partial sum.
$S_{1}=3$
$S_{2}=3+6=9$
$S_{3}=9+9=18$
$S_{4}=18+12=30$

The sequence of partial sum are

$$
\langle 3,9,18,30, \ldots\rangle
$$

Example 2:

Determine whether the sequence $a_{n}=\frac{6 n+3}{n-8}$ converge or diverge, and if it converges, give the value to which it converges to.
$\lim _{n \rightarrow \infty} \frac{6 n+3}{n-8}=6$ (using L'Hopital's Rule)
Thus, it is a converging sequence and it converges to 6.

Example 3:

A sequence $\left\langle a_{n}\right\rangle$ is defined by $a_{n}=2 \mathrm{n}+1$
a) List the first four terms

The first four terms of the sequence $2 n+1=\langle 3,5,7,9, \ldots\rangle$
b) What is the limit of this sequence?

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} 2 n+1 \\
& =2 \infty+1 \\
& =\infty
\end{aligned}
$$

c) Determine whether the sequence converge or diverge.

The terms of the sequence increase without bounds (goes to infinity) so the sequence diverges.
Note: If the limit is infinity, the sequence diverges.

Activity: Year 13 Mathematics textbook page 131: Exercise 6.1.1-Questions 1, 3, 5

1. A sequence $\left\langle a_{n}\right\rangle$ is defined by

$$
a_{n}=\frac{7 n+3}{n-9}
$$

a) Find the first four terms of the sequence.
b) Find the first three terms of the sequence of partial sums.
c) Find $\lim _{n \rightarrow \infty} \frac{7 n+3}{n-9}$
d) Explain why the sequence converges.
5. A sequence $\left\langle a_{n}>\right.$ is defined by $a_{n}=3 n+4$ Does it converge or diverge. Explain
3. A sequence $\left\langle a_{n}\right\rangle$ is defined by

$$
a_{n}=\frac{n+2}{n^{2}}
$$

a) Find the first two terms of the sequence of partial sums.
b) Determine whether a sequence converges or diverges, and if it converges, give the value to which it converges to.

Sangam SKM College - Nadi

Lesson Notes: Week 2

Year 13

Mathematics

Strand: Algebra
Sub Strand: Binomial Theorem
Content Learning Outcome: Use Binomial Theorem to expand expressions of the form $(x+\mathbf{a})^{\mathbf{n}}$.

BINOMIAL THEOREM

- FACTORIAL! - The factorial of a number (symbol n !) is defined as:

$$
n!=n \times(n-1) \times(n-2) \times(n-3) \times \ldots \times 3 \times 2 \times 1, n \in N
$$

Note: n ! is read as " n factorial"
e.g. $5!=5 \times 4 \times 3 \times 2 \times 1=120$
(This can be directly found using the calculator which has the key! Press 5! =)

- COMBINATIONS $n_{c_{r}}$ or $\binom{\boldsymbol{n}}{\boldsymbol{r}}$ - a combination is a selection of a certain number of elements from a set where the order of elements is not taken into account. The number of possible combinations of " r " elements from " n " things is denoted by:
$\binom{\boldsymbol{n}}{\boldsymbol{r}}=\frac{\boldsymbol{n}!}{(\boldsymbol{n}-\boldsymbol{r})!\boldsymbol{r}!}$
$\binom{10}{6}=\frac{10!}{(10-6)!\cdot 6!}=210$
(This can also be found using the $n_{c_{r}}$ key on the calculator Press $10 n_{c_{r}} \sigma=$)

- BINOMIAL THEOREM

The binomial theorem provides a useful method for raising any binomial to a nonnegative integral power:

$$
(x+\mathbf{a})^{\mathbf{n}}=\binom{\mathbf{n}}{\mathbf{0}} x^{\mathbf{n}-\mathbf{0}} \mathbf{a}^{\mathbf{0}}+\binom{\mathbf{n}}{1} x^{\mathbf{n}-1} \mathbf{a}^{1}+\binom{\mathbf{n}}{\mathbf{2}} x^{\mathbf{n}-2} \mathbf{a}^{2}+\ldots+\binom{\mathbf{n}}{\mathbf{n}} x^{\mathbf{n}-\mathbf{n}} \mathbf{a}^{\mathbf{n}}
$$

Example 1: Expand $(x+a)^{3}$ using the binomial theorem.

$$
\begin{aligned}
(x+\mathrm{a})^{3} & =\binom{3}{0} x^{3-0} \mathrm{a}^{0}+\binom{3}{1} x^{3-1} \mathrm{a}^{1}+\binom{3}{2} x^{3-2} \mathrm{a}^{2}+\binom{3}{3} x^{3-3} \mathrm{a}^{3} \\
& =1 \cdot x^{3} \cdot 1+3 \cdot x^{2} \cdot \mathrm{a}+3 \cdot x^{1} \cdot \mathrm{a}^{2}+1 \cdot 1 \cdot \mathrm{a}^{3} \\
& =x^{3}+3 x^{2} \mathrm{a}+3 x \mathrm{a}^{2}+\mathrm{a}^{3}
\end{aligned}
$$

Note: the power of x decreases from n to 0 while the power of a increases from 0 to n.

Example 2: Expand $\left(2 x-\frac{1}{x^{2}}\right)^{3}$ using the binomial theorem

$$
\begin{aligned}
\left(2 x-\frac{1}{x^{2}}\right)^{3} & =\binom{3}{0}(2 x)^{3}\left(-\frac{1}{x^{2}}\right)^{0}+\binom{3}{1}(2 x)^{2}\left(-\frac{1}{x^{2}}\right)^{1}+\binom{3}{2}(2 x)^{1}\left(-\frac{1}{x^{2}}\right)^{2}+\binom{3}{3}(2 x)^{0}\left(-\frac{1}{x^{2}}\right)^{3} \\
& =1.8 x^{3} \cdot 1+3.4 x^{2} \cdot\left(-\frac{1}{x^{2}}\right)+3.2 x \cdot\left(\frac{1}{x^{4}}\right)+1.1 \cdot\left(-\frac{1}{x^{6}}\right) \\
& =8 x^{3}-12+\frac{6}{x^{3}}-\frac{1}{x^{6}}
\end{aligned}
$$

Example 3: Write down the first four terms in the expansion of $\left(2 x+y^{2}\right)^{9}$

$$
\begin{aligned}
\left(2 \mathrm{x}+y^{2}\right)^{9} & =\binom{9}{0}(2 \mathrm{x})^{9}\left(y^{2}\right)^{0}+\binom{9}{1}(2 \mathrm{x})^{8}\left(y^{2}\right)^{1}+\binom{9}{2}(2 \mathrm{x})^{7}\left(y^{2}\right)^{2}+\binom{9}{3}(2 \mathrm{x})^{6}\left(y^{2}\right)^{3}+\ldots \\
& =1 .(2 \mathrm{x})^{9} .1+9 .(2 \mathrm{x})^{8} \cdot y^{2}+36 .(2 \mathrm{x})^{7} \cdot y^{4}+84 .(2 \mathrm{x})^{6} \cdot y^{6}+\ldots \\
& =512 x^{9}+2304 x^{8} y^{2}+4608 x^{7} y^{4}+5376 x^{6} y^{6}+\ldots
\end{aligned}
$$

Activity:

1. Use the binomial theorem to expand and simplify $(x+y)^{4}$
2. Expand and simplify $\left(2 x-\frac{1}{2}\right)^{4}$
3. Use the binomial theorem to find the first three terms of $\left(2 x-\frac{1}{x}\right)^{5}$

Sangam SKM College - Nadi

Lesson Notes: Week 3

Year 13

Mathematics

Strand: Algebra
Sub Strand: Binomial Theorem
Content Learning Outcome: Use general term formula to find particular term.

General Term Formula: $\mathrm{T}_{\mathrm{r}+1}=\binom{\mathrm{n}}{\mathrm{r}} x^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}}$
The $(\mathrm{r}+1)^{\text {th }}$ term which is the general term is given by $T_{r+1}=\binom{n}{r} x^{n-r} a^{r}$ and $\binom{n}{r}$ is the binomial coefficient.

Example: A term in an expansion of $(\mathrm{a}+\mathrm{b})^{\mathrm{n}}$ is $\binom{\mathrm{p}}{\mathrm{k}}\left(x^{2}\right)^{3}\left(-\frac{2}{x}\right)^{5}$.
Find $\mathrm{a}, \mathrm{b}, \mathrm{n}, \mathrm{p}$ and k .

$$
\mathrm{a}=x^{2}
$$

$\mathrm{b}=-\frac{2}{x}$
$\mathrm{k}=5$
$\mathrm{n}=\mathrm{p}=8$

Finding a Particular Term

Example 1:
Find the fourth term in the expansion of
$\left(x-\frac{2}{x}\right)^{8}$
$\mathrm{T}_{\mathrm{r}+1}=\binom{\mathrm{n}}{\mathrm{r}} x^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}}$
For the fourth term, $r=3$

$$
\begin{aligned}
\mathrm{T}_{(3+1)} & =\binom{8}{3} \mathrm{x}^{8-3}\left(-\frac{2}{x}\right)^{3} \\
& =56 \cdot \mathrm{x}^{5} \cdot \frac{-8}{x^{3}} \\
\mathrm{~T}_{4} & =-448 x^{2}
\end{aligned}
$$

Example 2:

What is the third term of $(a-3)^{10}$?

$$
\mathrm{T}_{\mathrm{r}+1}=\binom{\mathrm{n}}{\mathrm{r}} x^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}}
$$

For the third term, $r=2$

$$
\begin{aligned}
\mathrm{T}_{(2+1)} & =\binom{10}{2} \mathrm{a}^{10-2}(-3)^{2} \\
& =45 \cdot \mathrm{a}^{8} \cdot 9 \\
\mathrm{~T}_{3} & =405 \mathrm{a}^{8}
\end{aligned}
$$

Finding the Coefficient

Example 1:

Find the coefficient of x^{4} in the expansion of $(x+1)^{10}$
$\mathrm{T}_{(\mathrm{r}+1)}=\binom{10}{r} x^{10-r}(1)^{r}$
To solve for $\mathrm{r}: x^{10-r}=x^{4}$
$10-\mathrm{r}=4$
$r=6$
replace r with 6

$$
\begin{aligned}
& =\binom{10}{6} x^{10-6}(1)^{6} \\
& =210 \cdot x^{4} \cdot 1 \\
& =210 x^{4} \\
& \therefore \text { coefficient is } 210
\end{aligned}
$$

Example 2:

Find the coefficient of $x^{3} y^{4}$ in the expansion
of $(x+2 y)^{7}$
$\mathrm{T}_{(\mathrm{r}+1)}=\binom{7}{r} x^{7-r}(2 y)^{r}$
To solve for $\mathrm{r}: x^{7-r}=x^{3}$
$7-\mathrm{r}=3$
$r=4$
replace r with 4

$$
\begin{aligned}
& =\binom{7}{4} x^{7-4}(2 y)^{4} \\
& =35 \cdot x^{3} \cdot 16 y^{4} \\
& =560 x^{3} y^{4} \\
& \therefore \text { coefficient is } 560
\end{aligned}
$$

Finding Constant Term (term independent of \boldsymbol{x})

Example 1: Find the term independent of x in the expansion of $\left(x-\frac{8}{3}\right)^{6}$.
$\mathrm{T}_{(\mathrm{r}+1)}=\binom{6}{r} x^{6-r}\left(-\frac{8}{3}\right)^{\mathrm{r}}$
To solve for r : $x^{6-r}=x^{0}$
$6-\mathrm{r}=0$
$r=6$
$=\binom{6}{6} x^{6-6}\left(-\frac{8}{3}\right)^{6}$
$=1.1 \cdot \frac{262144}{729}$
$=\frac{262144}{729}$
\therefore Constant term is $\frac{262144}{729}$

Example 2: Find the constant term in the expansion of $\left(x+\frac{1}{x}\right)^{8}$.
$\mathrm{T}_{\mathrm{r}+1}=\binom{8}{r} x^{8-r}\left(\frac{1}{x}\right)^{\mathrm{r}}$
To solve for r: $x^{8-r} \cdot x^{-r}=x^{0}$ $8-\mathrm{r}-\mathrm{r}=0$

$$
r=4
$$

$$
=\binom{8}{4} x^{8-4}\left(\frac{1}{x}\right)^{4}
$$

$$
=70 \cdot x^{4} \cdot \frac{1}{x^{4}}
$$

$$
=70
$$

\therefore Constant term is 70

Activity:

1. Find the fourth term in the expansion of $(5+x)^{6}$
2. Find the coefficient of x^{4} in the expansion of $(1-2 x)^{9}$
3. Find the term independent of x in the expansion of $\left(3 x^{2}-\frac{1}{x}\right)^{12}$
