Sangam .S.K.M College- Nadi

Year 11 Life Skills - Mathematics

Worksheet 1 – Solutions

Savings Goal
Budget
Double-time pay
Overtime
Fixed Expenses
Variable expenses
Total wages = $22x 12.20 + 10x18.3 + 6x24.4$
= <u>\$597.80</u>
Normal hours $= 22$ hrs
Time and half = $10hrs$
Double time $= 6$ hrs
Cross check with the questions total hours should add up to 38hours. 22 hours normal .

Sangam SKM College- Nadi

Solution -Week 1

Year 11

Mathematics – Life Skills

Activity

- 1. Round off the following decimals to the number of decimal places indicated in the brackets.
 - a. 0.5831 (2) = 0.58
 - b. 638.569 (2) = 638.57
 - c. 10.6386(3) = 10.639
 - d. 77.783 (1) = 77.8
- 2. Total Growth = 7.05 + 6.95 + 6.098 + 5.99 = 26.088 cm

Therefore to nearest whole number its 26cm

3. a. 70.7 has been rounded to 1 decimal place. Work out the **upper** and **lower** bounds.

1 decimal place = $\frac{0.1}{2} = 0.05$

Lower bound = 70.7 - 0.05 = 70.65

Upper bound = 70.7 + 0.05 = 70.75

Therefore written in inequality form: 70.65 $\leq x \leq$ 70.75

b. 65.6 has been rounded to 2 decimal place. Work out the **upper** and **lower** bounds.

2 decimal places = $\frac{0.01}{2}$ = 0.005

Lower bound =65.6 - 0.005 = 65.595 = 65.60

Upper bound =65.6+0.005=65.61

Therefore written in inequality form: $65.60 \le x \le 65.61$

Sangam .S.K.M College- Nadi

Year 11 Applied Mathematics

Worksheet 1 – Solutions

1i)	Yes, because no foreign element is present.
ii)	(3 ♣4) ♣2= 2♣2 =
iii)	$3^{-1} = 2$
2i)	Total cost = deposit + installments
	$= (.2 \times 1200) + (12 \times 125)$
	= <u>\$1740</u> .
ii)	Extra = 1740-1200 = §540
3	Volume of square pyramid = $\frac{1}{3}$ x base area x height
	$=\frac{1}{3}x$ (5x5)x 15
	= <u>125 ccm³</u>

Sangam SKM College- Nadi

Solution -Week 1

Year 11

Mathematics – Applied

- 1. Find the midpoint of the segment connecting the points (6, 4) & (3, -4) (x_1, y_1) (x_2, y_2). $mp = \left(\frac{6+3}{2}, \frac{4+(-4)}{2}\right) = \left(\frac{9}{2}, \frac{0}{2}\right) = (4, 5, 0)$
- 2. Find the midpoint of the segment connecting the points (a, b) & (3a, c) (x_1, y_1) (x_2, y_2) .

$$mp = \left(\frac{a+3a}{2}, \frac{b+c}{2}\right) = \left(\frac{4a}{2}, \frac{b+c}{2}\right) = (2a, \frac{b+c}{2})$$

6. Find the distance between the points, (-4, -5) (1, -2) (x_1, y_1) (x_2, y_2) .

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(1 - 4)^2 + (-2 - 5)^2}$$

= $\sqrt{(1 + 4)^2 + (-2 + 5)^2}$
= $\sqrt{(5)^2 + (3)^2} = \sqrt{25 + 9} = \sqrt{34} = 5.83$

7. Find the length of the line segment whose end points are (-3, 4) (5, 4) (x_1, y_1) (x_2, y_2) .

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(5 - 3)^2 + (4 - 4)^2}$$
$$= \sqrt{(5 + 3)^2 + (4 - 4)^2}$$
$$= \sqrt{(8)^2 + (0)^2} = \sqrt{64} = 8$$

9. Find the equation of the line passing through the points, (2, 4) (-3, -6) (x_1, y_1) (x_2, y_2) .

Step 1: Find the gradient

Slope
$$\mathbf{m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-6 - 4}{-3 - 2} = \frac{-10}{-5} = \mathbf{2}$$

Step 2: Choose one point and the gradient in the point slope formula Let's use point (2, 4)

$$y - y_1 = m(x - x_1)$$
-----point slope formula

$$y - 4 = 2(x - 2)$$

$$y - 4 = 2x - 4$$

$$y - 4 + 4 = 2x - 4 + 4$$

$$y = 2x$$