SUVA SANGAM COLLEGE <u>YEAR 13</u> <u>MATHEMATICS</u> WORKSHEET 3

Strand 1	Complex Numbers
Sub-Strand	Geometrical Representation and Properties.
Content Learning	Represent rectangular form on complex plane, find modulus and argument of
Outcome	complex numbers and converting from rectangular to polar form and vice-versa.
Reference from	Pg 14 - 20
Text	

Questions

	CONCEPT IN BRIEF:
	To represent rectangular form $(z = a + bi)$ on a Complex plane, the $x - axis$ shows the real
	part(a) and the y – axis shows the imaginary part (b)
1.	If , plot z and z on an Argand diagram.
	CONCEPT IN BRIEF: To find the modulus(z) and argument(Arg(z)) of a complex number,
	z = a + bi using the Casio <i>Fx-82MS</i> calculator:
	ightarrow z = r Press
	Pol(a , b) =
	\blacktriangleright Arg (z) = θ Press
	RCL tan
2.	Given a complex number, ; (a) Find the modulus and the argument of z
	(b) Show that $z^{z} = z ^{2}$
	CONCEPT IN BRIEF:
	> The complex number $z = a + bi$, when expressed in polar form gives
	$z = r(\cos\theta + i\sin\theta)$ or rCis θ where r is the $ z $ and θ is the Arg(z).
	> To convert polar form $(z = rCis \theta)$ to rectangular form $(z = a + bi)$, using the
	calculator: • To find a Press
	Shift Pol(r , θ) =

	To find b Press
	RCL tan
3.	(a) Convert the complex number $z = -1 + i$ to polar form .
	(b) Convert the complex number $z = 2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$ to rectangular form.