SUVA SANGAM COLLEGE

YEAR 13

PHYSICS

WORKSHEET 3

Strand 1 P13.1	Mechanics
Sub-Strand P	Kinematics of Linear Dynamics
13.1.3	
Content Learning	Application of Newton's second law to appreciate the concept of linear
Outcome	dynamics
P13.1.3.1	
Reference from	Pg 13 to 17
Text	

Questions

No.	CONCEPT IN BRIEF : Force of friction $f_k = \mu_k \times F_N$. For mass on a flat surface
	$F_N = mg$. Take $g = 9.8 \text{ m/s}^2$.
1.	 A carpenter is pulling a box of 80 kg with a force of 540 N on a horizontal surface. The coefficient of kinetic friction between the surface and box is 0.42. Calculate the: (a) normal force acting on the box. (b) frictional force exerted by the surface on the box. (c) acceleration of the box.
	CONCEPT IN BRIEF : Force of friction $f_k = \mu_k \times F_N$. For mass on an inclined surface $F_N = mg \cos\theta$, $F_s = mg \sin\theta Take g = 9.8 \text{ m/s}^2$.
2.	A two mass system is connected over a light frictionless pulley. The coefficient of kinetic friction is 0.12.

