YEAR 12
PHYSICS

WORKSHEET 3

STRAND 1 MECHANICS

NO.	CONCEPT IN BRIEF: RELATIONSHIP TYPES OF RELATIONSHIPS (i) Directly proportional (ii) Inversely proportional (iii)Direct square relationships (power of relationship) (iv)Inverse square relationships (root of relationship)
1	Identify the type of relationship shown by the given graphs: a. b. d.

	CONCEPT IN BRIEF: RELATIONSHIP DIRECT SQUARE RELATIONSHIPS - each quantity varies with direct proportion with respect to the square of the other, i.e. if a variable increases by an amount ' n ' then the variable that it is directly proportional to increases by an amount ' n ' (n squared) Example 1 $A=k B^{2}$ Basically, if B "DOUBLES" then A "QUADRUPLES", due to the square. If B "triples" then A increases by a factor of NINE.
2	Use the formula $F=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$ to calculate the value of F if: (i) v is doubled (ii) m is halved and v is doubled
	CONCEPT IN BRIEF: RELATIONSHIP INVERSE SQUARE RELATIONSHIPS Each quantity varies with inverse proportion with respect to the square of the other, i.e. if a variable increases by an amount n then the variable that it is inversely proportional to decreases by an amount n^{2}. Example 2 $\mathrm{A}=\frac{k}{B^{2}}$ For the inverse square" if B "DOUBLES", then A DECREASES by a factor of FOUR, or it is simply ONE FOURTH its original value. If B "TRIPLES", then A is ONE NINTH its original value.
3	$F=\frac{G m_{1} m_{2}}{r^{2}} \quad$ What would be the value of F if: a. The distance, r, is doubled: b. Both masses are doubled c. Both the mass m 1 and the distance r , are doubled

