PENANG SANGAM HIGH SCHOOL <u>YEAR 13 PHYSICS</u> <u>WORKSHEET 4</u>

- 1. A measurement of a length is given as: $X = 0.25 \pm 8\%$. The correct expression for the square of X is:
 - A. $X^2 = 0.0625 \text{ m}^2 \pm 8\%$
 - B. $X^2 = 0.0625 \text{ m}^2 \pm 0.01 \text{ m}^2$
 - C. $X^2 = 0.0625 \text{ m}^2 \pm 16\%$
 - D. $X^2 = 0.0625 \text{ m}^2 \pm 64\%$
- 2. Which of these prefixes represent 10^{-9} meters ?
 - A. pico
 - B. micro
 - C. giga
 - D. nano

3. The mass of an object is calculated from experimental data to be 38.5671 g. The \pm absolute error in the mass was determined to be \pm 0.2 g. The mass should be reported, in g , as

- A. 39
- B. 38.6
- C. 38.57
- D. 38.567
- 4. An elevator on the ground floor is ascending to the fourth floor of a building. If the

acceleration on the lift is zero then which of the following statement correctly describes the motion of the elevator

- A. stationary
- B. a constant velocity
- C. accelerating
- D. decelerating
- 5. A glass cube is measured to be 15.5 ± 0.2 cm.

Find its volume in cm^3 along with its absolute uncertainty. (V = L³)

Hint: $V = 15.5^3 \pm 3 x$ (% Unc.)

6. Show that the formula $V_{f^2} = V_{i^2} + 2ad$ is dimensionally consistent, where d is the distance travelled

in time, t, v_i is the initial velocity, v_f is the final velocity and a is the acceleration.

 $V_{f^2} = V_{i^2} + 2ad$

Hint: $(m/s)^2 = (m/s)^2 + 2 (m/s^2) m$

 $(L/T)^2 = (L/T)^2 + 2 (L/T^2) L$ simplify

7. A boy stands on a scale in a lift. When the lift is stationary the reading on the scale is 75 kg. Calculate the reading on the scale when the lift accelerates upwards at 3 ms^{-2} .

Hint: $\mathbf{R} = \mathbf{W}\mathbf{t} + \mathbf{m}\mathbf{a}$ = $\mathbf{m}\mathbf{g} + \mathbf{m}\mathbf{a}$

 An object hangs from a spring balance in an elevator accelerating upward at 5ms⁻². The reading on the balance is 500N.
Calculate the:

(i) mass of the object. Hint: $\mathbf{R} = \mathbf{mg} + \mathbf{ma}$ $\mathbf{m} = \mathbf{R}/(\mathbf{g} + \mathbf{a})$

(ii) reading on the balance when the lift is stationary. Hint: $\mathbf{a} = \mathbf{0} \mathbf{m/s}$

(iii) reading on the balance when the lift accelerates downwards at 6ms⁻².

Hint: R = mg - ma

9. The coefficient of kinetic friction between the 8 kg object and the plane is 0.15.

Use : $\sum F = \sum ma$

(ii) tension in the string.

Hint: for the 10kg mass; Wt - T = ma T = Wt - ma

$$T = mg - ma$$

10. The coefficient of friction between a load of sand and the tray of a truck in which it carries is 0.6. At what angle to the horizontal does the truck tray have to be tilted before the sand starts to slide out? Hint: $F_x = f$

$$mg \sin \Theta = \mu x mg \cos \Theta$$

$$Tan \Theta = \mu$$

SANGAM ONLINE RESOURCES - ONLINE RESOURCES