| BA SANGAM COLLEGE |  |
|-------------------|--|
| YEAR 11           |  |
| PHYSICS           |  |
| WORKSHEET 5       |  |

## 1. Complete the table of fundamental quantities and their SI units

Table 1 showing the seven (7) Fundamental Quantities of the International System of Units.

| Fundamental Quantity |        | S.I. Unit |        |
|----------------------|--------|-----------|--------|
| Name                 | Symbol | Name      | Symbol |
| Mass                 | m      | kilogram  | kg     |
| Length               |        | metre     | m      |
| Time                 | t      | second    | S I I  |
| Current              |        | ampere    | A      |
| Temperature          |        | kelvin    | к      |
| Amount of Substance  | r      | mole      | mol    |
| Luminous Intensity   | lv     | candela   | С      |

2. Write a physical quantity which is equivalent to kgm/s<sup>2</sup>

Derive from Newtons Second Law formula

- 3. State two scalar quantities.
- 4. State two vector quantities.

Hint:

Scalar-magnitude only

Vector- magnitude and direction

- If a man walks 17 m West and then 15 m East, what is the magnitude of the man's total displacement?
- A trolley travelling at 2 m/s attains a speed of 6 m/s in 2s. What is its' acceleration?

Given  $V_i = 2m/s$ ,  $V_f = 6m/s$  and t = 2s, Find a.

7. cyclist travelling at 3.5 m/s decelerates at  $0.5 \text{m/s}^2$ .

i) How long does he take to come to rest?

ii) How far does he travel while coming to rest?

8. A beam of negligible mass is balanced by the forces shown below.



- i) State the principle of moments
- ii) Find the force,  $F_2$  required to balance the beam.

9. A truck of mass 1000 kg moving at 5 m/s collides with another truck of mass 1500 kg moving in the same direction at 3 m/s. If both of them couple together after collision, what will be their common velocity, v?

Use the law of conservation of momentum

Formula:  $m_1v_1 + m_2v_2 = (m_1 + m_2)v$