

# **3055 BA SANGAM COLLEGE**

1.

PH: 6674003/9264117 E-mail: basangam@connect.com.fj



#### WORKSHEET 10

| School: <u>Ba Sangam College</u><br>Subject: <u>Chemistry</u> |                                                                    |                                                |                                             |            |                                                                                                                                                                                                                                                                                                | Year: <u>13</u><br>Name:                                                                            |                              |                                          |                                       |  |
|---------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|---------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------|---------------------------------------|--|
| Strand                                                        |                                                                    | 4 - Materials                                  |                                             |            |                                                                                                                                                                                                                                                                                                |                                                                                                     |                              |                                          |                                       |  |
| Sub strand                                                    |                                                                    | 4 1- Inorganic Chemistry                       |                                             |            |                                                                                                                                                                                                                                                                                                |                                                                                                     |                              |                                          |                                       |  |
| Contont Loorning                                              | 20                                                                 | -Describe some properties of transition motals |                                             |            |                                                                                                                                                                                                                                                                                                |                                                                                                     |                              |                                          |                                       |  |
| Content Learning                                              | , Outcom                                                           | lle                                            | Even by the economic of coloured company de |            |                                                                                                                                                                                                                                                                                                |                                                                                                     |                              |                                          |                                       |  |
| -Explain the occurrence of coloured compounds.                |                                                                    |                                                |                                             |            |                                                                                                                                                                                                                                                                                                |                                                                                                     |                              |                                          |                                       |  |
| -Describe the use of transition metals as catalyst.           |                                                                    |                                                |                                             |            |                                                                                                                                                                                                                                                                                                |                                                                                                     |                              |                                          |                                       |  |
| <b><u>2. Transition meta</u></b>                              | als as co                                                          | loured                                         | l comp                                      | oun        | ids Ti                                                                                                                                                                                                                                                                                         | The colours of some common oxidation states of the transition<br>metals is shown in the table below |                              |                                          |                                       |  |
| • Transition metals are able to form coloured                 |                                                                    |                                                |                                             |            |                                                                                                                                                                                                                                                                                                | Transition                                                                                          | Symbol of th                 | e Oxidation                              | Colour                                |  |
| compounds because of the electrons in the                     |                                                                    |                                                |                                             |            | in the                                                                                                                                                                                                                                                                                         | Metal                                                                                               | Ion                          | state                                    |                                       |  |
| incompletely filled d subshells                               |                                                                    |                                                |                                             |            |                                                                                                                                                                                                                                                                                                | Scandium                                                                                            | Sc <sup>3+</sup>             | +3                                       | Colourless                            |  |
| <ul> <li>transition motals on their ions exist as</li> </ul>  |                                                                    |                                                |                                             |            | + 0.C                                                                                                                                                                                                                                                                                          | Titanium                                                                                            |                              | +3                                       | Colourless                            |  |
| • it ansition metals of their joins exist as                  |                                                                    |                                                |                                             |            |                                                                                                                                                                                                                                                                                                |                                                                                                     | V2+                          | +2                                       | Violet                                |  |
| coloured compounds because they are                           |                                                                    |                                                |                                             |            |                                                                                                                                                                                                                                                                                                | Varad                                                                                               | V3+                          | +3                                       | Green                                 |  |
| able to absorb and re-emit light of                           |                                                                    |                                                |                                             |            |                                                                                                                                                                                                                                                                                                | vanadium                                                                                            | V4+<br>V5+                   | +4                                       | Blue<br>Yellow                        |  |
| different wavelengths.                                        |                                                                    |                                                |                                             |            |                                                                                                                                                                                                                                                                                                |                                                                                                     | Cr <sup>2+</sup>             | +2                                       | Blue                                  |  |
| • Transition metal ions that do not have                      |                                                                    |                                                |                                             |            |                                                                                                                                                                                                                                                                                                | Chromium                                                                                            | Cr <sup>3+</sup>             | +3                                       | Green                                 |  |
| - Indistrion mean rolls that do not have                      |                                                                    |                                                |                                             |            |                                                                                                                                                                                                                                                                                                |                                                                                                     | Cr <sup>6+</sup>             | +6                                       | Yellow<br>Light pipt                  |  |
| partiany fined d orbitals are not coloured.                   |                                                                    |                                                |                                             |            |                                                                                                                                                                                                                                                                                                |                                                                                                     | Mn <sup>4+</sup>             | +2                                       | Light pink<br>Plack/dark brown        |  |
| An example 1s Sc3+.                                           |                                                                    |                                                |                                             |            | ]                                                                                                                                                                                                                                                                                              | Manganese                                                                                           | Mn <sup>6+</sup>             | +6                                       | Green                                 |  |
| e F                                                           |                                                                    |                                                |                                             |            |                                                                                                                                                                                                                                                                                                |                                                                                                     | Mn <sup>7+</sup>             | +7                                       | Purple                                |  |
| th C                                                          |                                                                    | <u> </u>                                       |                                             |            |                                                                                                                                                                                                                                                                                                | Iron                                                                                                | Fe <sup>2+</sup>             | +2                                       | Green                                 |  |
| en ou                                                         |                                                                    | er(I                                           | (a)                                         |            | _                                                                                                                                                                                                                                                                                              | Cabalt                                                                                              | Fe <sup>3+</sup>             | +3                                       | Dirty brown                           |  |
| col<br>ve                                                     | Ŧ                                                                  | dd                                             | 5+<br>5+                                    | ne         |                                                                                                                                                                                                                                                                                                | Cobalt                                                                                              | Co <sup>2+</sup>             | +2                                       | Blue                                  |  |
| ete                                                           | Ē                                                                  | ec ec                                          | [3]4]                                       | q          |                                                                                                                                                                                                                                                                                                | Nickel                                                                                              | Ni <sup>2+</sup>             | +2                                       | Green                                 |  |
| th<br>y b                                                     | <u> </u>                                                           | -ġ                                             | HN                                          | ark        |                                                                                                                                                                                                                                                                                                | Copper                                                                                              | Cu+                          | +1                                       | Colourless                            |  |
| in d                                                          | <b>6</b>                                                           | l e                                            | S                                           |            |                                                                                                                                                                                                                                                                                                |                                                                                                     | Cu <sup>2+</sup>             | +2                                       | Blue                                  |  |
| lar metal ion is char<br>lse the difference in e              | se the difference in e<br>the colour.<br><b>complexes of coppe</b> | raaquacopper(II) Tetr<br>ion                   | $[Cu(H_2O)_4]^{2+}$ (aq)                    | Light blue | <ul> <li>3. <u>Transition metals as catalysts</u></li> <li>Transition metals are effective catalysts<br/>because they can exist in many oxidation<br/>states and thus the partially filled d orbitals<br/>enable donation and acceptance of electrons<br/>very easily.<br/>Examples</li> </ul> |                                                                                                     |                              |                                          |                                       |  |
| icu                                                           | ut gi                                                              | ior Te                                         |                                             |            |                                                                                                                                                                                                                                                                                                | Transitio                                                                                           | on metal                     | Use                                      | as catalyst                           |  |
| art                                                           | ang                                                                |                                                |                                             |            | I                                                                                                                                                                                                                                                                                              | ron (Fe)                                                                                            |                              | Haber process - ma                       | anufacture of ammonia                 |  |
| nd a p<br>This is                                             | us ché<br>e diffe                                                  | achlorocuprate(II)                             | [CuCl4] <sup>2-[ag]</sup>                   | green      | Ν                                                                                                                                                                                                                                                                                              | Nickel (Ni)                                                                                         |                              | Hydrogenation of v<br>margarines and sof | egetable oils (to make<br>ft-spreads) |  |
| our<br>s. ]                                                   | th th                                                              |                                                |                                             | sh g       | C                                                                                                                                                                                                                                                                                              | Copper (Cu)                                                                                         |                              | Oxidation of metha                       | nol                                   |  |
| nds ar                                                        | change<br>langes,<br><b>our of</b>                                 |                                                |                                             | Yellowi    |                                                                                                                                                                                                                                                                                                | Transitio<br>comp                                                                                   | on metal<br>ound             | Use                                      | as catalyst                           |  |
| le liga<br>l ion c                                            | nell ch<br>e: Col                                                  | Tetr<br>ion                                    |                                             |            | N<br>(1                                                                                                                                                                                                                                                                                        | Manganese(III<br>Mn2O3)                                                                             | ) oxide                      | Thermal decomposi<br>and potassium chlo  | ition of hydrogen peroxide<br>prate   |  |
| te:<br>ten th<br>meta                                         | subsł<br><b>ampl</b> e                                             | Name                                           | ormula<br>of<br>omplex                      | Colour     | V<br>('                                                                                                                                                                                                                                                                                        | /anadium(V) (<br>V <sub>2</sub> O <sub>5</sub> )                                                    | oxide                        | Contact Process (m                       | aking of sulphuric acid)              |  |
| No<br>Wh<br>the                                               | á'<br>Ex                                                           |                                                | ι η η η η η η η η η η η η η η η η η η η     |            | Т                                                                                                                                                                                                                                                                                              | litanium(III) c                                                                                     | hloride (TiCl <sub>3</sub> ) | Polymerisation of e                      | thane to polyethene                   |  |

## 4. Paramagnetism

- Transition metals are **paramagnetic** as they are attracted to the externally applied magnetic field.
- The attraction is due to presence of one or • more unpaired electrons which are attracted by the magnetic field.

## Example

A very good example of a paramagnetic transition metal is iron (Fe). The orbital diagram for iron (Fe) is shown below.



Other examples of paramagnetic substances include: Cu<sup>2+</sup> Fe<sup>3+</sup> and Cr<sup>3</sup>

- Diamagnetic substances are weakly repelled by a magnetic field. (H<sub>2</sub>O, NaCl,  $C_6H_6$ )
- Diamagnetism is shown by those substances in which all the electrons are paired and there are no unpaired electrons.

#### Exercise

1. State the colour of the following compounds.

- a. FeCl<sub>3</sub> \_\_\_\_\_
- b. K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> \_\_\_\_\_

c. MnO<sub>4</sub><sup>2-</sup> - \_\_\_\_\_\_\_(4 marks)

- 2. Consider the following metals: Fe, V, Zn
- a. Which metal does not form coloured

compounds at room temperature? (1 mark)

b. Which metal has an oxide that is used as a catalyst in the synthesis of sulphuric acid?

### (1 mark)

3. Consider the reaction below which shows the decomposition of ammonium dichromate.  $(NH_4)_2Cr_2O_7 \rightarrow Cr_2O_3 + N_2 + 4H_2O$ 

a. Calculate the oxidation number of Cr in  $Cr_2O_7^{2-}$  and  $Cr_2O_3$  respectively. (2 marks)

b. What maybe the colours of  $(NH_4)_2Cr_2O_7$ and  $Cr_2O_3$ , respectively?

#### (2 marks)

- 4. Explain which of the following elements will Form coloured compounds; magnesium or manganese. (1 mark)
- 5. Explain the term 'dative bonding' with a relevant example. (2 marks)

6. Explain why transition metals can form coloured compounds. Give examples to support your answer. (2 marks)

15. Explain why transition metals and their compounds are effective catalysts. Give an example of a transition metal that is used as a catalyst and state where it is used. (2 marks)

16. Differentiate between paramagnetism and diamagnetism. Give an example to support your answer. (2 marks)