

# **3055 BA SANGAM COLLEGE**

PH: 6674003/9264117 E-mail: basangam@connect.com.fj



### WORKSHEET 7

**Year:** 11

School: <u>Ba Sangam College</u>

| Subject: Chemistry              | Name:                                                               |
|---------------------------------|---------------------------------------------------------------------|
| Strand                          | 3 - Reactions                                                       |
| Sub strand                      | 3.2 – Types of Reactions                                            |
| <b>Content Learning Outcome</b> | Analyze the different types of chemical reactions from experimental |
|                                 | set up and chemical equations.                                      |

#### **DOUBLE DISPLACEMENT**

When two different salt solutions react forming a clear solution. The resultant salts formed are both soluble in water.

It is termed double displacement as the anions are exchanged between the two cations.

Example

Barium chloride + Sodium Nitrate → Barium nitrate + Sodium

### **OXIDATION-REDUCTION (redox)**

Oxidation is the gain of oxygen and loss of  $H^+$  and  $e^-$ . Reduction is the loss of oxygen and gain of  $H^+$  and  $e^-$ . As a substance is reduced the other reactant will be oxidised.

Example 1: In the extraction of metal from metal oxides using carbon, the metal oxide is reduced to the metal and carbon is oxidised to carbon dioxide.

 $C_{(s)} + 2CuO_{(s)} \rightarrow 2Cu_{(s)} + CO_{2(g)}$ 

<u>Example 2</u>: Iron metal is produced in the Blast Furnace by the reduction of iron (III) oxide by carbon monoxide. The carbon monoxide is oxidised to carbon dioxide.

 $Fe_2O_{3(s)} + 3CO_{(g)} \rightarrow 2Fe_{(l)} + 3CO_{2(g)}$ 

#### **Exercise**

- 1. Balance the equations given below and identify the type of reaction shown by each equation:
  - i.  $Zn + AgNO_3 \rightarrow Zn(NO_3)_2 + Ag$

|                                                                       | (1 mark) |
|-----------------------------------------------------------------------|----------|
| ii. $FeCl_3 + NaOH \rightarrow Fe(OH)_3 + NaCl$                       |          |
|                                                                       | (1 mark) |
| iii. $H_2O \rightarrow H_2 + O_2$                                     |          |
|                                                                       | (1 mark) |
| iv. $Zn + HCl \rightarrow ZnCl_2 + H_2$                               |          |
|                                                                       | (1 mark) |
| v. NaCl + AgNO <sub>3</sub> $\rightarrow$ NaNO <sub>3</sub> + AgCl    |          |
|                                                                       | (1 mark) |
| vi. HBr + NaOH $\rightarrow$ NaBr + H <sub>2</sub> O                  |          |
|                                                                       | (1 mark) |
| 2. Identify the following equations as either oxidation or reduction. |          |
| i. $2Cl \rightarrow Cl_2 + 2e$                                        |          |
|                                                                       | (1 mark) |
| ii. $I_2 + 2e^- \rightarrow 2I$                                       |          |
|                                                                       | (1 mark) |
| iii. $Mg \rightarrow Mg^{2+} + 2e$                                    |          |
|                                                                       | (1 mark) |

|                                                                                         | (1 mark)  |
|-----------------------------------------------------------------------------------------|-----------|
| 3. The reaction of lead oxide with carbon forms lead metal and carbon dioxide.          |           |
| i. Write a balanced chemical equation to represent the reaction above.                  | (1 mark)  |
| ii. From the equation, determine which reactant is oxidised and which is reduced.       |           |
| iii. Explain why the reaction between lead oxide and carbon is called a redox reaction. | (1  mark) |
| Flactrolysis                                                                            | (1 mark)  |

#### Electrolysis

Electrolysis -is the decomposition of an electrolyte by passing an electric current through it. An electrolyte is a molten salt or solution that conducts electricity.

#### Electrolysis is carried out in an electrolytic cell



The components of an electrolytic cell are: 1. Electrolyte – molten or solutions of ionic compounds. The mobile/free ions are the carriers of electric current. Examples include: NaCl<sub>(1)</sub>, NaCl<sub>(aq)</sub>, H<sub>2</sub>O<sub>(1)</sub>, MgCl<sub>2(aq)</sub>, CuSO<sub>4(aq)</sub>. 2. Batteries/Direct Current, DC power supply source of current, creates or discharge ions in the electrolyte. The electrode potential should be large enough to drive the reactions.

3. Electrodes – connects batteries/DC power supply to electrolyte. The two types are anode (positively charged) and cathode (negatively charged).

-Electrodes are usually inert or unreactive and a conductor of electricity.

- -A common electrode is carbon (graphite) as it is inert and a conductor.
- -Less reactive metals such as copper, iron and zinc, are used in electroplating.

## Electrolysis of a salt solution



4. How does electroplating prevent corrosion?

#### (1 mark)

5. Study the set up given below. The iron nail is touching the zinc nail as they are tied together.

(i) Will the iron corrode? Give a reason for your answer. (1 mark) (ii) The zinc nail was removed. State an

observation that you will make after a few days. (1 mark)

6. Suppose you are given the following materials: A silver table spoon, copper electrodes, electrical wires, 1L beaker, 500 mL 1.0 moles/litre *copper sulphate solution, AC/DC Transformer* 

(i) Draw a diagram of the electrolytic cell you would construct using the given materials in order to plate the silver spoon with copper.

