

3055 BA SANGAM COLLEGE

PH: 6674003/9264117 E-mail: basangam@connect.com.fj

WORKSHEET 8

School: <u>Ba Sangam College</u> Subject: <u>Chemistry</u>	Year: <u>11</u> Name:
Strand	3 - Reactions
Sub strand	3.3 – Acids, Bases and Salt
Content Learning Outcome	Describe the differences between acids and bases.

<u>Acids</u>

Acids form hydrogen ions /protons (H+) or hydronium ions (H3O+) in solution.

 $\frac{\text{Examples}}{\text{HCl}_{(aq)} \rightarrow} \text{H}^{+}_{(aq)} + \text{Cl}^{-}_{(aq)}$ $\text{HCl}_{(aq)} + \text{H}_2\text{O}_{(l)} \rightarrow \text{Cl}^{-}_{(aq)} + \text{H}_3\text{O}^{+}_{(aq)}$

In general: $\mathbf{HA} + \mathbf{H}_2\mathbf{O} \rightarrow \mathbf{A}^- + \mathbf{H}_3\mathbf{O}^+$

Properties of Acids

- Have a low pH (below 7).
- Neutralises bases to form water and a salt.
- Have a sour taste.
- Changes blue litmus to red.
- React with many metals to produce hydrogen gas.

Examples of Acids:

- Hydrochloric acid (HCl), sulphuric acid (H₂SO₄) and nitric acid (HNO₃)
- Citric acid (in orange juice or lemon juice)
- Acetic acid (in vinegar)
- Phosphoric acid (in Coke)
- Ascorbic acid (in vitamin C tablets)
- Uric acid (in urine)
- Stearic and lauric acid (in cosmetics)

Bases/Alkalis

Form hydroxyl ions (OH-) in solution. **Example**

 $NaOH_{(s)} \rightarrow Na^+_{(aq)} + OH^-_{(aq)}$

In general: $BOH \rightarrow B+ + OH$

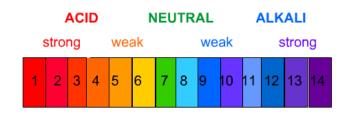
Properties of Bases/Alkalis

- Have a high pH (above 7).
- Changes red litmus to blue.
- Neutralises acids to form water and a salt.

- Have a bitter taste.
- Feels slippery.

Examples of Bases/Alkalis

- Ammonia
- Calcium hydroxide (caustic lime/lime water)
- Lithium hydroxide
- Potassium hydroxide (caustic potash)
- Sodium hydroxide (caustic soda)
- Many bleaches, soaps, toothpastes and cleaning agents
- Window cleaners may contain ammonia


Exercise

<u>Fill in the blanks</u>

Acids have a ______ taste, react with metals to produce ______ gas, turn ______ different colours according to pH and are ______ because their water solutions conduct electricity. On the other hand, bases have a ______ taste, feel ______ turn _____ different colours according to pH and are ______ because their water solutions conduct electricity. **(8 marks)**

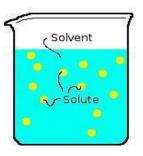
The pH Scale

- pH is a measure of how acidic or how alkaline a solution is.
- It is a scale for measuring hydrogen ion concentration.
- pH- p stands for '*potenz*' in German meaning power and H- hydrogen.

<u>Measuring the pH of a solution using the</u> <u>Universal Indicator</u>

• The *Universal Indicator* is in liquid form and changes colour at different pH.

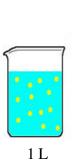
<u>Steps in measuring the pH of a solution using the Universal Indicator.</u>


- 1. Take the test solution in a test tube. If there is a solid substance such as a salt then dissolve the solid by adding distilled water to it.
- 2. Place a drop of the Universal Indicator using a fine dropper into the solution.
- 3. Observe the colour produced and match it with the different colour shades of the standard colour pH chart.
- 4. Note down the pH of the colour chart that matches most closely with the colour produced on the pH paper.

Strengths of Acids and Bases (ref: pg 71)

Acids	Bases
Strong Acids	Strong Bases
Are acids which completely dissociates into Are bases which completely dissociates in ions in aqueous solution. Examples include: aqueous solution. Examples include: NaOH HCl, H ₂ SO ₄ , and HNO ₃ .	Are bases which completely dissociates in aqueous solution. Examples include: NaOH and KOH.
Weak Acids	Weak Bases
Are acids which only partially ionise or dissociates in aqueous solution. Examples include: Acetic acid (CH ₃ COOH) and include: Ammonia (NH ₃) and ammonium carbonic acid (H ₂ CO ₃). Are bases which only partially ionise or dissociates in aqueous solution. Examples include: Ammonia (NH ₃) and ammonium hydroxide (NH ₄ OH)	Are bases which only partially ionise or dissociates in aqueous solution. Examples include: Ammonia (NH ₃) and ammonium hydroxide (NH ₄ OH)

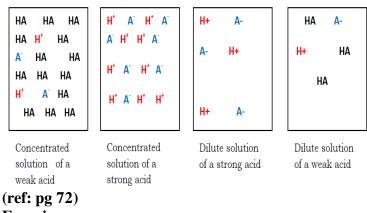
Solutions


A solution consists of a liquid (the solvent) with a substance (the solute) dissolved in it, eg, milk and ocean.

Dilute and Concentrated solutions

- **Dilution** involves adding more solvent to a solution so that the concentration of the solute becomes lower.
- The total number of solutes in the solution remains the same after dilution, but the volume of the solution becomes greater, resulting in a lower concentration.

Example



A dilute solution

A concentrated solution

A Summary of Concentrated/Dilute solution of Strong/Weak Acid

Exercise

- 1. What is the difference between a strong acid and a weak acid? (1 mark)
- 2. What is the difference between a strong acid and a concentrated acid solution?