PENANG SANGAM HIGH SCHOOL P.O.BOX 44, RAKIRAKI

LESSON NOTES

Year/Level: 11 C/D

Subject: Chemistry

Strand	3 Reactions
Sub Strand	3.1 chemical equations and calculations
Content Learning Outcome	Carry out calculations to verify the Law of Definite Composition

Law of Definite Composition

- The law of definite composition was proposed by Joseph Proust based on his observations on the fixed composition of chemical compounds.
- This law states that chemical compounds are composed of a fixed ratio of elements as determined by mass.
- Elements combine in whole numbers: it is not possible to have a compound with portion an atom.

Example 1

The compound water, H_20 , always is a chemical combination of hydrogen and oxygen in a 1:8 ratio by mass. If a mixture of hydrogen and oxygen in some other ratio, say 1:2, were reacted, there would be water formed, but there would also be some un-reacted oxygen, because water always forms in the 1:8 ratio by mass.

	$2H_{2(g)} + O_{2(g)} \longrightarrow$	$2H_2O$
mass ratio	1g: 8g	9g
or	2g : 16g	18g

Example 2

Glucose has the chemical formula $C_6H_{12}O_6$. This means that for glucose to be formed, it must be comprised of 6 atoms of carbon, 12 atoms of hydrogen, and 6 atoms of oxygen. The carbon makes up 40 % of glucose; the hydrogen makes up 6.7% of glucose and the oxygen makes up 53.3% of glucose.

Calculations on Law of Definite Proportion

% of element = $\frac{\text{Mass of the element}}{\text{Total mass of the compound}} \times 100$

Example 1

What is the experimental percentage of oxygen in CO_2 if 42.0 g of carbon reacted completely with 112.0 g of oxygen?

$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$$

% O =
$$\frac{\text{Mass of oxygen}}{\text{Mass of carbon dioxide}} \times 100$$

=
$$\frac{112 \text{ g}}{112 \text{ g} + 42 \text{ g}} \times 100$$

=
$$72.7\%$$

Example 3:

A sample of calcium hydroxide, $(Ca(OH)_2)$, with a mass of 7.4g contains 4g of calcium, 3.2g of oxygen and 0.2g of hydrogen.

- (a) Find the percentage composition of the sample
- (b) How many grams of calcium would you expect to find in a sample of calcium hydroxide with a mass of 25g?

Solution:

(a)	a) Find the percentage composition									
	Calciur	n :	4.0g	x	100	=	54%			
			7.4g		1					
	Oxyger	n :	<u>3.2g</u>	x	100	=	43%			
			7.4g		1					
	Hydrog	gen:	<u>0.2g</u>	х	100	=	<u>3%</u>			
			7.4g		1					
	Total					=	100%			
(b) Find the mass of calcium in a 25g sample										
	54%	х	25g	=	<u>54</u>	х	25	=	<u>13.5g</u>	
					100					

ACTIVITY:

1. Calculate the % composition of each element in $Al_2(SO_4)_3$.