

3055 BA SANGAM COLLEGE

PH: 6674003/9264117 E-mail: basangam@connect.com.fj

WORKSHEET 9

School: <u>Ba Sangam College</u>				ge	Year: <u>13</u>									
Subje	ct: (Chei	mist	r <u>y</u>						Name	•			
Strand							4 - Materials							
Sub strand 4							4.1- Inorganic Chemistry							
Conte	ent I	Lear	nin	g Oı	utco	me	-Investigate the properties and reactions of hydrides, oxides							
							and chloric	des.						
Trans	sitio	n M	[eta]	s (d	-blo	ck ele	<u>ments)</u>		Element	Symbol	Atomic	Electron	Abbreviated	
Transi	ition	n me	tals	have	e par	tially	filled 'd' orbit	als			Number	Configuration	Electron	
or the	y ca	n fo	rm o	one c	or me	ore ior	ns which have		Scandium	Sc	21	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹ 4s ²	[Ar]3d ¹ 4s ²	
partial	lly f	illed	l'd'	orbi	itals.									
e	e	5	.5	e	c	e -			Titanium	Ti	22	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² 4s ²	[Ar]3d ² 4s ²	
E	z	4	×	×	8				Vanadium	V	23	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ²	[Ar]3d ³ 4s ²	
	Ľ.	0	ā	-	A								[A 10 15 A 1	
	0	S	S	Ч	Ъ				Chromium	Cr	24	1s ² 2s ² 2p ⁰ 3s ² 3p ⁰ 3d ³ 4s ¹	[Ar]3d ⁵ 4s ¹	
	z	۵.	As	Sb	ö				Manganese	Mn	25	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ²	[Ar]3d ⁵ 4s ²	
	O	S	Ge	S	Pb	.uk			Ince	D.	06	1-20-20-62-20-62-164-2	[4-]0-164-2	
	B	R	g	⊆	F	00			Iron	Fe	20	1822822p°3823p°3d°482	[Ar]30°4s ²	
tals I		_	Zu	B	무	o.bb			Cobalt	Co	27	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ 4s ²	[Ar]3d ⁷ 4s ²	
			3	90	Nu l			Nickel	Ni	28	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ 4s ²	[Ar]3d ⁸ 4s ²		
			=	p	5	ttp://u								
			0	4	-			Copper	Cu	29	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹	[Ar]3d ¹⁰ 4s ¹		
Me			0	2		ч ::			Note					
ion –	-	6	ű	æ	Ő	LOI			1 Chromium					
nsit			ž	4	Re	ed f			Instead of h	aving 30	1^4 and 4	s^2 one of the electron	rons	
[rai			apt Wo			from 4s orbital jumps to 3d orbital, so that both								
0.823			>	q	Та	Ad			orbitals can become half-filled orbitals, which is					
		エびげ							more stable	$(3d^5, 4s^1)$).	· · · · · · · · · · · · · · · · · · ·		

2. Copper

Instead of having $3d^9$ and $4s^2$, one of the electrons from 4s orbital jumps to 3d orbital, so that the 4s orbital can become half-filled orbital and the 3d orbital can become completely filled orbital, which is more stable $(3d^{10}, 4s^{1})$.

Exercise

- 1. Write the electron configuration of the following atoms or ions using the s,p,d notation. (7 marks)
- a. Fe : _____ b. V : _____
- c. Cr :
- d. Cu⁺: _
- e. Zn²⁺:
- f. Mn²⁺
- 2. Explain why the electron configuration of: a. Chromium is [Ar] $3d^5 4s^1$ and not [Ar] $3d^4$ $4s^{2}$. (1 mark)

Note

Zn

- is not a transition metal but has similar properties.

-Zinc has a fully filled 3d orbital ([Ar] $3d^{10}4s^2$]) and forms Zn^{2+} ion, which also has a fully filled 3d orbital ([Ar] 3d¹⁰]).

Electron configuration of transition metals

The electrons fill the lower energy orbitals (closer to the nucleus) before they fill the higher energy orbitals.

Electron configuration of the transition metal ions

Sangam Education Board – Online Resources

Name of element	Electron configuration of the element	Ion	Electron configuration of the ion
Scandium	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹ 4s ²	Sc^{3+}	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
Titonium		Ti ³⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹
manum	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² 4s ²	Ti ⁴⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
N/ 1:	1 20 20 50 20 50 124 2	V ³⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ²
Vanadium	1s ² 2s ² 2p ⁰ 3s ² 3p ⁰ 3d ³ 4s ²	V5+	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
	1 20 20 60 20 60 154 1	Cr ³⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³
Chromium	1s ² 2s ² 2p ⁰ 3s ² 3p ⁰ 3d ³ 4s ¹	Cr ⁶⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
		Mn ²⁺	$1s^22s^22p^63s^23p^63d^5$
Manganese	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ²	Mn ⁴⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³
		Mn ⁷⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
		Fe ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶
Iron	1s ² 2s ² 2p ^o 3s ² 3p ^o 3d ^o 4s ²	Fe ³⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵
a 1 1	1 22 22 52 22 52 52 121 2	Co ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷
Cobalt	1s ² 2s ² 2p°3s ² 3p°3d′4s ²	Co ³⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶
Nickel	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ 4s ²	Ni ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸
0	1-20-20-60-20-60-1104-1	Cu*	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰
Copper	1s-2s-2p-3s-3p-3d104s1	Cu ²⁺	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹

Note: Atoms or ions with the same electronic configuration are said to be isoelectronic. Examples include: Mn^{2+} and Fe^{3+} .

<u>Properties of Transition Metals</u> 1. Oxidation state of the transition metals

The incompletely filled 'd' orbitals allow transition metals to lose varying number of electrons forming variable oxidation states. This is because of the closeness in energy of both 3d and 4s level. Thus, they have similar stability by losing different number of electrons.

Metal	Symbol	Oxidation states
Scandium	Sc	+3
Titanium	Ti	+1, +2, +3 , +4
Vanadium	V	+1, +2 , +3 , +4 , +5
Chromium	Cr	+2 , +3 , +4, +5, +6
Manganese	Mn	+1, +2 , +3, +4 , +5, +6 , +7
Iron	Fe	+1, +2 , +3 , +4, +5, +6
Cobalt	Co	+1, +2 , +3 , +4, +5
Nickel	Ni	+2 , +3, +4
Copper	Cu	+1 , +2 , +3

Note: The common Oxidation States are in bold.

- There is an increase in the number of oxidation states from Sc to Mn.
- All possible oxidation states only exhibited by Manganese (Mn).
- There is a decrease in the number of oxidation state from Mn to Cu due to the pairing of d-electrons which occurs after Mn (Hund's Rule).
- The stability of higher oxidation states decreases along Sc to Cu.
- Down the group, the stability of higher oxidation states increases due to easier availability of both 3d and 4s electrons for ionisation.
- Because of the multiplicity of oxidation states and being able to act as catalysts, the transition elements are often involved in oxidation reduction reactions.
- 3. Explain why scandium cannot form compounds in +4 oxidation state while titanium can. (1 mark)

b. Copper is [Ar] $3d^{10} 4s^1$ and not [Ar] $3d^9 4s^2$. (1 mark)

Electron configuration of the transition metal ions

The 3d subshell is closer to the nucleus, repels the 4s electrons, making the 4s electrons less stable. Thus, when d block elements form ions, the 4s electrons are lost first and the most common ions formed are X^{2+} ; (X can be any transition metal).

2.