

3055 BA SANGAM COLLEGE

PH: 6674003/9264117 E-mail: basangam@connect.com.fj

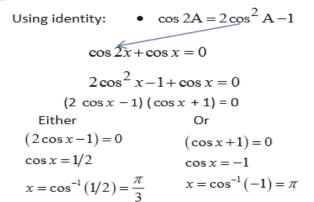
Worksheet 10

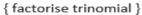
School: <u>Ba Sangam College</u>

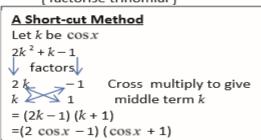
Subject: <u>Mathematics</u>

Year / Level: <u>13</u>

Name of student:

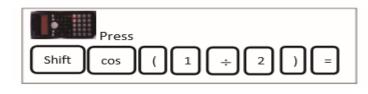

Strand	4 – Trigonometry	
Sub strand	4.3 – Trigonometric Equations	
Content Learning Outcome	Choose suitable strategies for finding solutions to Trigonometric	
	Equations.	

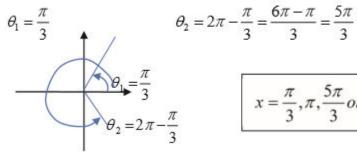

Solving Trigonometric Equations


Ref. Yr 13 Mathematics Textbook Pg 91 - 95

Example 1 Solve $Cos\ 2x + x = 0$

Answer




From case 1, it can be seen that cosine is positive and hence it lies in the first and the fourth quadrant.

Acute angle:

$$\theta = \cos^{-1}\left(\frac{1}{2}\right)$$
$$= \frac{\pi}{3}$$

• Cos is positive, the angle lies in the $\mathbf{1}^{\mathsf{st}}$ and $\mathbf{4}^{\mathsf{th}}$ quadrants of the xy -plane.

$$x = \frac{\pi}{3}, \pi, \frac{5\pi}{3}$$
 or $\theta \in \{\frac{\pi}{3}, \pi, \frac{5\pi}{3}\}$

Example 2 Solve
$$\tan^2\theta = \tan\theta$$
 $for \ 0^\circ \leq \theta \leq 180^\circ$

Rearranging and factorizing $\tan^2\theta = \tan\theta$ $\tan^2\theta = \tan\theta$
 $\tan^2\theta - \tan\theta = 0$
 $\tan\theta \ (\tan\theta - 1) = 0$

Either Or

 $\tan\theta = 0$ $\tan\theta - 1 = 0$
 $\theta = \tan^{-1}0$ $\tan\theta = 1$
 $\theta = 0$ $\theta = \tan^{-1}(1) = 45^\circ$
 $\theta = 0^\circ, 45^\circ$ or $\theta \in \{0^\circ, 45^\circ\}$

1

ACTIVITY: Solve (3 marks each)

1.	2.	3.
$\cos 2\theta + \sin \theta = 0 \text{ for } 0 \le \theta \le 2\pi.$	$\cos 2\theta + \cos \theta + 1 = 0$ for $0 \le \theta \le 2\pi$.	$\cos \theta (2\cos \theta + \sqrt{3}) = 0$ for $0^{\circ} \le \theta \le 180^{\circ}$.