SUVA SANGAM COLLEGE <u>YEAR 13</u> <u>MATHEMATICS</u> <u>WORKSHEET 7</u>

Strand 2	Vectors
Sub-Strand	Norm of a vector and Unit Vectors
Content Learning	Find norm and unit vectors
Outcome	
Reference from	Pg 42 - 45
Text	

Questions

	CONCEPT IN BRIEF:
	Norm of a vector \tilde{a} is the length of the vector. It is also known as modulus or
	magnitude. The symbol is $ a $ and is found using Pythagoras theorem:
	$ a = \sqrt{x^2 + y^2 + z^2}$
1.	Find the magnitude of the following vectors:
	(a) $\tilde{a} = \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}$ (b) $\tilde{b} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$
	$\begin{pmatrix} 0 \end{pmatrix} b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$
	CONCEPT IN BRIEF:
	A unit vector is any vector which is of 1 unit length.
	Unit vectors in the direction of x, y, and z- axis are denoted by i, j and k.
2.	Vectors are given as $\tilde{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and $\tilde{y} = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$, find:
	(a) Express \tilde{x} and \tilde{y} in terms of unit vectors <i>i</i> , <i>j</i> and <i>k</i> .
	(b) Find $2\tilde{y} - \tilde{x}$ and express in terms of unit vectors <i>i</i> , <i>j</i> and <i>k</i> .
	CONCEPT IN BRIEF:
	Normalizing a vector which is finding a unit vector in the same direction
	$\frac{d}{ d } \rightarrow unit \ vector \ in \ the \ direction \ of \ d$
3.	A vector is given as $\tilde{p} = 4i - 4j + 7k$
	a) Find the modulus of $\tilde{p} = 4i - 4j + 7k$
	b) Find the unit vector in the direction of $\tilde{p} = 4i - 4j + 7k$.