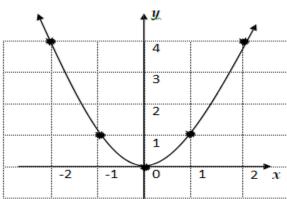
PENANG SANGAM HIGH SCHOOL P.O.BOX 44, RAKIRAKI Week 9 LESSON NOTES

Year/Level: 12 Subject: Mathematics

Strand	3
Sub Strand	3.1.1
Content	Students should be able to:
Learning	Draw Quadratic graphs
Outcome	

Lesson Notes

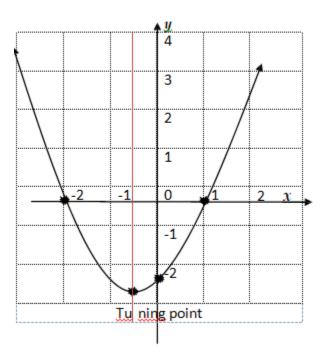

Topic: Quadratic Graphs

- Quadratic Graphs have a degree of 2, eg, $y = x^2$, $y = x^2 + 2$ and $y = (x 2)^2$
- The graph will be symmetrical about the turning point (Vertex).
- **Symmetrical** objects will have one half as the reflection of the other half. Line of Symmetry the line that divides the object into two equal halves.
- When drawn the graph has a parabola summarised in the table below

GRAPH $y = \pm a x^2$	POSITIVE SHAPE	NEGATIVE SHAPE
	$(y = + a x^2)$	$(y = -a x^2)$
$y = x^2$, $y = -x^2 + 2$,	A 4	Turning point
$y = (x+1)^2$	\	
	_ \./	
	Turning	
	point	' '

To sketch the quadratic graphs there are three methods:

EXAMPLE 1: Sketch graph of $y = x^2$ Using tables



Take some x – values, i.e., positive and negative numbers.
Substitute those x values to find y

x	$y = x^2$	(X.Y)
-2	(-2) ² = 4	(-2,4)
-1	(-1) ² = 1	(-1,1)
0	$(0)^{2}=0$	(0,0)
1	(1) 2= 1	(1,1)
2	(-2) ² = 4	(2,4)

EXAMPLE 2: Draw the graph of $y = x^2 + x - 2$

Using Intercepts

To find x - int, let y = 0: Substitute 0 in place of y & solve $0 = x^2 + x - 2 \bigcirc Factorize$

$$\begin{array}{ccc}
x & 2 \\
x & -1 \longrightarrow \\
0 = (x + 2) & (x = 1) & Solve \\
x + 2 = 0, & x - 1 = 0 \\
x = -2, 1 & [2 \text{ roots}]
\end{array}$$

To find y - int, let x = 0: Substitute 0 in place of x & solve $y = x^2 + x - 2$ $= 0^2 + 0 - 2$

$$= 0^2 + 0.2$$

= -2

Shape: $y = +x^2$ Turning point: Since symmetric, it should be at the midpoint of x - coordinates, thus

$$x_m = \frac{-2+1}{2} = \frac{-1}{2}$$

$$y = (-0.5)^2 + -0.5 - 2$$
$$= -2.25$$

Turning point= (-0.5, -2.25)

Activity

Sketch the following graphs

a)
$$y = x^2 - 25$$

b)
$$y = -x^2 - 2x + 3$$

c)
$$y = 3x - x^2$$

d)
$$f(x) = x^2 - 2x$$

Please note the third method is using **transformation of quadratic graphs** which will be covered in the **next** worksheets.