#### PENANG SANGAM HIGH SCHOOL YEAR 11 PHYSICS WEEK 11

| Strand     | ENERGY                                                                 |
|------------|------------------------------------------------------------------------|
| Sub Strand | Work Power And                                                         |
|            | Energy.                                                                |
| Content    | At the end of the lesson students should be able to                    |
| Learning   | • show understanding of the concepts of gravitational potential energy |
| Outcome    | and kinetic energy, using associated formulae in simple applications   |
|            | of these.                                                              |

## Lesson Notes

### **MECHANICAL ENERGY**

## Mechanical energy can either be kinetic energy or potential energy

**KINETIC ENERGY** - due to motion or the objects velocity

| $E_{K} = \frac{1}{2} \text{ m v}^{2}$ (mass in kg, velocity in m/s and kinetic energy in | n joules ) |
|------------------------------------------------------------------------------------------|------------|
|------------------------------------------------------------------------------------------|------------|

Eg A 6kg mass is moving at 8m/s. Find its kinetic energy.

$$E_{K} = \frac{1}{2} \text{ m v}^{2}$$
  
=  $\frac{1}{2}$  (6) (8)<sup>2</sup>  
= 192 J

- 1. A ball of mass 0.4kg is kicked with a velocity of 12m/s. find its kinetic energy
- 2. The velocity of a 40kg cart changes from 5m/s to 9m/s. Find the gain in kinetic energy.
- 3. A 7kg mass has a kinetic energy of 300J. Find its velocity.

# **POTENTIAL ENERGY**

This means the energy is stored and can be used to do work at a later stage.

The two types of potential energy we will study are

- a. Potential energy due to an objects position in a planets gravitational field
- b. Potential energy due to the shape of an object eg in stretched rubber band, bent stick, extended or compressed spring.
- a. Potential energy due to an objects position in a planets gravitational field and this is given by
- $E_P = m g h$  (mass in kg, g is the size of gravity in m/s<sup>2</sup> and h is the height in m)

On earth the size of gravity is 10m/s<sup>2</sup>

Eg A 7kg mass is placed at a height of 12m find the potential energy it has.

- 1. A bird of mass 2.5kg is at a height of 20m above the ground. Find its potential energy.
- 2. A 9kg mass has a potential energy of 600J. find the height it is placed at.
- 3. A 4kg mass is placed as shown



Find its potential energy

SANGAM EDUCATION BOARD - ONLINE RESOURCES