SUVA SANGAM COLLEGE

<u>YEAR 13</u>

PHYSICS

WORKSHEET 5

Mechanics
Rotational Kinematics (Horizontal Circles and Banking of Ci=urves))
Apply the knowledge of Newton's Second Law and appreciate the concept
of rotational kinematics.
Pg 20 to 22

Questions

	provides the acceleration force, the maximum speed a car can turn without slipping is
	$v = \sqrt{\mu g r}.$
2	A 1500-kg car moving on a flat, horizontal road negotiates a curve. If the radius of the
۷.	A 1500-kg car moving on a riat, nonzontar foad negotiates a curve. If the radius of the
	curve is 35.0 m and the coefficient of static friction between the fires and dry pavement is
	0.523, find the maximum speed the car can have and still make the turn successfully.
	CONCEPT IN BRIEF: Banked curve: For every banked curve, there is one speed at
	which the entire centripetal force is supplied by the horizontal component of the normal
	force, and no friction is required. The maximum speed a car can turn without slipping is
	$v = \sqrt{rg \tan \theta}$
3.	A civil engineer wishes to redesign the curved roadway in such a way that a car will not
	have to rely on friction to round the curve without skidding. In other words, a car moving
	at the designated speed can negotiate the curve even when the road is covered with ice.
	Suppose the designated speed for the ramp is to be 13.4 m/s and the radius of the curve is
	35.0 m.
	At what angle should the curve be banked?