SUVA SANGAM COLLEGE

<u>YEAR 13</u>

PHYSICS

WORKSHEET 7

Strand 1 P13.1	Mechanics
Sub-Strand	Rotational Dynamics
P13.1.5	
Content Learning	Apply the concept of both linear and rotational dynamics to solve problems.
Outcome	
P13.1.5.1	
Reference from	Pg 28 to 37
Text	
0	

Questions

No.	CONCEPT IN BRIEF : Torque and angular acceleration: Torque $\tau = I$. Torque is also given by
	$\tau = Fr.$
1.	A wheel with the radius of 0.9 m and a moment of inertia of $4.2 \ kgm^2$ has a constant force of 15 N applied tangentially at the rim as shown below.
	Calculate the a) angular acceleration b) angular speed, ω, after 4 s from rest.
	CONCEPT IN PRIFE, I any of concernation of angular momentum:
	$L_i = L_f \qquad \longrightarrow \qquad I\omega_1 = I\omega_2$
2.	A solid disk having inertia of $3 kgm^2$ rotates with an angular velocity of 10 radians per seconds. Another disk of inertia $4 kgm^2$ which is not rotating is dropped on the first disk. If the two rotates together, find their common angular velocity.

