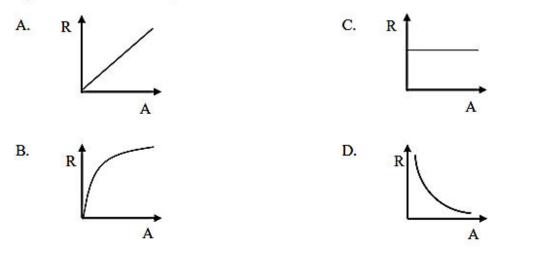
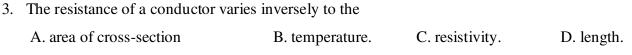
NAME: **YEAR 13:**


YEAR 13 PHYSICS WORKSHEET WEEK 7 **STRAND: DIRECT CURRENT**


SUBSTRAND: Current and charge + Resistance, Resistivity & Ohms Law

A charge of 3.25 C passes through a wire in 0.6 s. The electric current flowing through the wire is 1. A. 0.6 A B. 0.18 A C. 1.95 A D. 5.42 A

2.

The resistance of a conductor is given by $R = \rho \frac{l}{A}$. Which of the following graph best represents the relationship between resistance, R, and the cross sectional area, A, of a conductor?

- 4. Copper contains approximately 10^{29} free electrons per m³ and a typical copper wire has a cross sectional area of 0.001 m². Resistivity of copper is $1.62 \times 10^{-8} \Omega m$. If a 3 A current flow through the wire, calculate the
 - current density in the conductor. (i)
 - drift velocity of the electrons. (ii)

5. A copper wire of cross-sectional area 3×10^{-6} m carries a current of 10 A. The density of free electrons in copper is 8×10^{28} electrons per cubic metre.

a) Find the current density.

- b) Calculate the drift velocity of the electrons.
- 6. A potential difference of 12 V is found to produce a current of 0.40 A in a 3.2 m length of wire with a uniform radius of 0.40 cm. Calculate the:a) resistance of the wire.

b) resistivity of the wire.

7. Calculate the resistivity of a conductor in which a current density of 2.5 Am⁻² exists, when an electric field of 15 Vm⁻¹ is applied on it.