WEEK 7

PENANG SANGAM HIGH SCHOOL LESSON NOTES PYHSICS – Y13

STRAND: GRAVITATION

SUB-STRAND: Newton's Law of Gravitation

CONTENT LEARNING OUTCOME: to solve problems with the understanding of the law of Gravitation and its application to satellite motion.

There is a force of attraction between any two particles in this universe, and this phenomena is known as gravitation.

Newton's Law of Universal Gravitation

"Every particle in this universe attracts every other particle with a force which is <u>directly proportional to</u> <u>the product of their masses</u> <u>and inversely proportional to the square of the distance between them."</u>

To derive an expression for the acceleration due to gravity for earth:

Force of gravity = Weight

 $\mathbf{F}_{\mathbf{g}} = \frac{GMm}{r^2} , \quad \text{weight} = mg$ $\mathbf{F}_{\mathbf{g}} = \qquad \text{Weight}$ $\frac{GMm}{r^2} = \qquad mg \quad (m \text{ can be eliminated })$

 $\mathbf{g} \quad = \quad \frac{GM}{r^2}$

Where: $\mathbf{M} = \mathbf{mass}$ of earth $r = \mathbf{radius}$ of earth

To obtain a value for gravitational acceleration: Mass of earth = 5.98×10^{24} kg , Radius of earth = 6.4×10^{6} m

SANGAM EDUCATION BOARD - ONLINE RESOURCES

$$g = \frac{GM}{r^2} = \frac{\left(6.67 \times 10^{-11} Nm^2 kg^{-2}\right)\left(5.98 \times 10^{24} kg\right)}{\left(6.4 \times 10^6 m\right)^2} = \frac{9.74 \text{ m/s}^2}{9.74 \text{ m/s}^2}$$

The Motion of Satellites

To find the orbital velocity Equate centripetal force (\mathbf{f}_{c}) equal to gravitational force (\mathbf{f}_{g})

$$\begin{aligned} \mathbf{f} \mathbf{c} &= \mathbf{f} \mathbf{g} \\ \frac{mv^2}{r} &= \frac{GMm}{r^2} \\ mv^2 &= \frac{GMm}{r} \end{aligned}$$
 Hence, the orbital speed is given by

Note The satellite's mass has no effect on its orbital speed.

The period of the satellite is given by

т=	$2\pi r$
1 -	v

Exercise

(a) A communication satellite is placed in a circular orbit, 300 km above the earth's surface.

Calculate the:

- (i) orbital speed of the satellite.
- (ii) period of the satellite.

Attempt Question from Y13 Text: Pg 43, Exercise 1.8 (Q 1)

SANGAM EDUCATION BOARD - ONLINE RESOURCES