WEEK 9

PENANG SANGAM HIGH SCHOOL LESSON NOTES PYHSICS – Y13

STRAND: GRAVITATION

SUB-STRAND: Total energy of a satellite.

CONTENT LEARNING OUTCOME: to be able to determine the total energy and relate it to Potential and Kinetic energies.

The *Kinetic Energy* (K_e) of a projectile at a distance *r* from earth;

Equate centripetal force (\mathbf{f}_{c}) equal to gravitational force (\mathbf{f}_{g})

f _c	=	f	g
$\frac{mv^2}{r}$	=	$\frac{GM}{r^2}$	$\frac{1}{2}$
mv ²	=		$\frac{GMm}{r}$
$\frac{1}{2}$ mv ²		=	$\frac{GMm}{2r}$
K _e		=	$\frac{GMm}{2r}$

Total energy of satellite in circular orbit at a distance "r" from the centre of the earth.

$$E_P = U = -\frac{GMm}{r}$$
, $E_K = \frac{GMm}{2r}$

At the surface of the earth, the E_P is large and negative. (much less than points further away). The total mechanical energy of a satellite in a circular orbit at a distance "r" from the centre of the earth will be the sum of its gravitational potential energy and its kinetic energy.

$$\mathbf{E}_{\text{Total}} = \mathbf{U} + \mathbf{E}_{\mathbf{K}}$$
$$= -\frac{GMm}{r} + \frac{GMm}{2r}$$
$$= \frac{GMm - 2GMm}{2r}$$
$$= -\frac{GMm}{2r}$$
$$\mathbf{E}_{\text{Total}} = -\frac{GMm}{2r}$$

So the total energy is the negative of the kinetic energy.

SANGAM EDUCATION BOARD - ONLINE RESOURCES

Binding Energy

Binding energy is the energy needed for a projectile or a satellite to escape the gravitational field.

 $E_{Total} \ge 0$ for a projectile.

In order for the projectile to escape, its total energy should be positive.

If the satellite is to be in a circular orbit, the total energy is $E_{Total} = -\frac{GMm}{2r}$

Since in order for the satellite to escape, the total energy has to be ≥ 0 means that

$$E_T \ge \frac{GMm}{2r}$$

<u>Exercise</u>

- (a) What is the gravitational potential energy of a 50 kg satellite in a circular orbit 500 km above the surface of the earth?
- (b) Determine the kinetic energy of the satellite.
- (c) Calculate the total energy of the satellite. [Mass of earth = 5.98×10^{24} kg , Radius of earth = 6.4×10^{6} m]

SANGAM EDUCATION BOARD - ONLINE RESOURCES