

3055 BA SANGAM COLLEGE

PH: 6674003/9264117 E-mail: basangam@connect.com.fj

WORKSHEET 14

School: Ba Sangam College	Year: 12				
Subject: Biology	Name:				
Strand	1 – Structure and Life Processes				
Sub strand	1.4 – Comparative Form and Function in Plants and Animals				
Content Learning Outcome	-Examine the products of different excretory systems and discuss				
_	the system of excretion and osmoregulation and associated				
	problems in selected organisms.				
Excretion and Osmoregulation	Excretion and Osmoregulation in Invertebrate				
<u>Animals</u>	P P P P P P P P P P P P P P P P P P P				
I. Aquatic Invertebrates: Cnida	arians and				
Mollusc (Bivalves)	Maister tubi				
Excretion and Osmoregulation					
- Sessile aquatic animals in wh	ich ammonia				
diffuses out into the surround	ing water.				
- These organisms are small an					
metabolic wastes slowly. The	refore, they do				
Water Conservation	ystem.				
- They live in water: therefore	do not worry				
about dehydration	do not wonly				
II. Terrestrial Invertebrates: I	about deliveration.				
Excretory organ of the insects is known as					
Malpighian Tubules. These are tube extensions					
of the gut which float in the open blood cavity					
(haemocoele).					
- Excretory products of insects	are uric acid.				
The Malpighian tubules absor	rb nitrogenous				
wastes form the blood and co	nvert it to uric				
acid.					
- The tubules join with the hin	d gut and uric				
acid crystals pass out with the	e faeces.				
	Intestine				
	Midgut Malpighian				
	(stomach) tubules				
	Salt, water, and Feces and urine To anus				
Ulater entare contracti	le vacuole				
due to osmosis	Malpighian tubule				
All and a state	Rectum				
A 1 71	Reabsorption of				
The cycle	H ₂ O, ions, and valuable organic				
is repeated	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	Contractile Water Conservation				
G the last	- Insects are terrestrial animals - threat of				
Contractile vacuole	dehydration. Their water conserving				
bursts and expels water	adaptations include:				
Contractile vacuole	-Excretion of solid uric acid crystals				
moves to edge of ce	instead of urea which needs to be diluted				

_

-Excretion of solid uric acid crystals instead of urea which needs to be diluted in water.

Waxy exoskeletons reduce water

evaporation form body surfaces.

Moist respiratory surfaces of the trachea inside their bodies- reduce evaporation. Closing of spiracles when they are

inactive.

The hind gut reabsorbs water from the faeces.

Excretion and Osmoregulation in Vertebrate Animals

Excretory Organ:

Liver- which deaminates excess amino (1)acids; and

(2)Pair of kidneys- which filter the resulting nitrogenous wastes out of the blood.

Hormones, the brain tells the kidneys how much water and salts the body needs to retain to maintain homeostasis.

I. Aquatic Vertebrates:

Fish

Excretion and Osmoregulation

- Both fresh and saltwater fish excrete ammonia directly into water therefore no energy is spent on converting it to urea.
- Fish face osmotic problems. Water constantly moves into freshwater fish's cells and move out of a saltwater fish's cells.

Exercises

- 1. Identify four ways in which insects reduce water loss? (4 marks)
- 2. Briefly explain how human excretory system (liver and a pair of kidneys) conduct excretion and maintain osmoregulation.(2 marks)
- 3. Identify the advantages and disadvantages of excreting the following products. (6 marks)

(U marks)				
	Waste	Advantages	Disadvantages	
	Ammonia			
	Uric acid			
	Urea			