

3055 BA SANGAM COLLEGE

1.

PH: 6674003/9264117 E-mail: basangam@connect.com.fj

<u>Week 11</u>

School: Ba Sangam College	Year: <u>11</u>	
Subject: Chemistry	Name:	
Strand	3 - Reactions	
Sub strand	3.3 – Acids, Bases and Salt	
Content Learning Outcome	-State and illustrate the solubility rules of salts and use it to predict	
0	the formation of a precipitate.	

Preparing a Standard Solution

- <u>Standard Solution</u>- a solution whose concentration is known.
- <u>**Primary Solution-**</u> is the salt used to prepare the standard solution.

<u>Steps</u>

Titration

• Is a technique in which a solution of known concentration is used to determine the unknown concentration of another solution.

Indicators

These are substances which indicate the acidic or basic nature of a solution by their colour change.

Common indicators	used in th	he laboratory
-------------------	------------	---------------

Indicator	Colour		
	Basic	Endpoint	Acidic
Phenolphthalein	Pink	Light/faint/pale pink	Colourless
Methyl orange	Yellow	Orange	Red
Bromothymol blue	Blue	Green	Yellow

Example

During an experiment on preparing a standard solution, a Year 11 Chemistry student dissolved 4.6 g of anhydrous sodium carbonate (Na2CO3) in 500 mL of water.

(i) Name the glassware used to prepare the standard solution.

Standard flask OR Volumetric flask

(ii) Calculate the concentration of the solution prepared in g L-1.

Concentration = <u>Mass</u>	Volume = 500 mL x <u>1 L</u>
Volume	1000 mL
$= \frac{4.6 \text{ g}}{0.5 \text{ L}}$	= <u>0.5 L</u>
$= 9.2 \text{ gL}^{-1}$	

Concentration of a Solution

- The concentration of a solution is the amount of solute divided by the volume of solvent.
- ✤ The units of concentration are g mL⁻¹ and g L⁻¹.
- * A conversion factor can be used to convert between units eg. Convert mL to L.

 $Concentration = \frac{Mass}{Volume}$

- (iii) State **one** possible source of error during the preparation of the solution
- Incorrect weighing
- Not using a wash bottle to transfer left over salt in the beaker
- Use of wet volumetric flask
- Spilling the solution while transferring from beaker into the volumetric flask
- Impurities in chemicals

Exercise

- 1. How many grams of KOH is used to make 2.5 L of a 50 g/L solution of KOH. (1 mark)
- 2. Preparing a standard solution requires a series of steps. Arrange the steps given below in the order you would follow to prepare a standard solution of sodium carbonate.
 - A. Rinse the funnel and the beaker with distilled water.
 - B. Measure the mass of sodium hydroxide.
 - C. Pour the solution into a standard flask.
 - D. Dissolve the sodium hydroxide in 100 mL of water.
 - E. Make the volume to exactly 250 mL.

(2 ¹/₂ marks) 3. Given below are the initial and final readings of a burette during a titration experiment.

Initial Reading

Final Reading

- i. Explain why it is important to have the meniscus at eye level when reading a burette. (1 mark)
- ii. Calculate the titre used in the titration in litres. (1 mark)
- 4. Which standard flask contains exactly 250 mL of standard solution? (1 mark)

- 5. The measuring instrument used for transferring and measuring small volumes of liquids accurately is a (1 mark)
 - A. beaker.
 - B. pipette.
 - C. standard flask.
- D. measuring cylinder.
- 6. During the course of an acid-base titration experiment, state:
- (i) the purpose of using an indicator. (1 mark)

(ii) why the contents of the conical flask are swirled continuously. (1 mark)

7. Define the term standard solution. $(\frac{1}{2} \text{ mark})$

