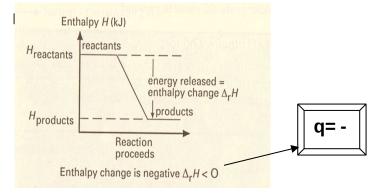
PENANG SANGAM HIGH SCHOOL

P.O.BOX 44, RAKIRAKI

LESSON NOTES

WEEK 13

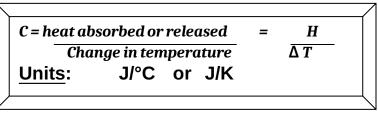

Year/Level: 13A/B

Subject: Chemistry

Strand 3	Reactions	
Sub Strand 3.2	Thermochemistry	
Content	By the end of this lesson students should be able:	
Learning	• Define heat of reactions and describe the two types of reactions.	
Outcome	• Define enthalpy change and perform calculations on enthalpy change related	
	to it.	

Exothermic Reactions

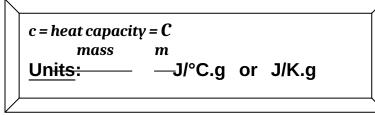
- * Reaction in which energy is **released** into the surrounding.
- \star Heat of the product is **less than** the reactant and surrounding becomes warmer.



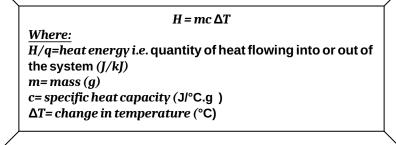
Enthalpy

- \star The heat content of a substance.
- \star Enthalpy change in a reaction depends upon the making and the breaking of bonds:
 - i. Bond breaking is endothermic.
 - ii. Bond forming is exothermic.

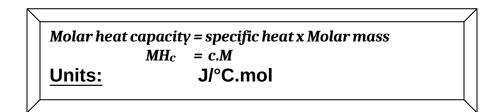
Heat Capacity (C)


* Amount of heat that will change temperature of the object by 1°C.

Specific Heat Capacity(c)


SANGAM EDUCATION BOARD - ONLINE RESOURCES

* Amount of heat that will change the temperature of 1g of the substance by 1°C.


Therefore: heat capacity = specific heat capacity x mass

$$\begin{array}{ccc} C & = & c & x & m \\ \underline{H} & = & c & x & m \\ \hline \Delta T & \end{array}$$

Molar Heat Capacity

- * Amount of heat that will change the temperature of one mole of the substance by 1°C.
- ★ Heat capacity per mole of an element or compound.

Example:

78.2 J of heat raises temperature of 45.6g of lead by 13.3°C. Calculate specific heat and molar heat capacity of lead. (Molar mass of lead = 207.2 g/mol) Solution

M(Pb) = 207.2 g/mol H = 78.2J m = 45.6g $\Delta T = 13.3 ^{\circ}C$ c = ??	$H = mc \Delta T$ $c=H/m \Delta T$ = 78.2/(45.6).(13.3) $= 0.129J/^{\circ}C.g$	$MH_c = c.M = 0.129 (207.2) = 26.72 J/°C.mol$
---	---	---

Exercise

1. When 2000J of energy is supplied to 100g of C_2H_5OH , the temperature increases from 13.5°C to 23.5°C. What is the specific heat capacity of C_2H_5OH in J/g/°C.

SANGAM EDUCATION BOARD - ONLINE RESOURCES

ADDITIONAL QUESTIONS

1. The following results were obtained for combustion of ethanol in the laboratory:

Volume of water in the calorimeter = 400mlInitial temperature of water= 23°CFinal temperature of water= 33°CMass of ethanol burnt= 0.95gSpecific heat capacity of water= 4.2 J/g/KMr of ethanol= 46 g/mol

i. Calculate the heat (Hc) required to raise the temperature of water from 23° C to 33° C.

ii. Calculate the heat (Hc) energy produced when 1mol of ethanol is burnt.

- 89.3J of heat is required to raise the temperature of 10g of copper by 11.1°C. calculate :
 i. The heat of copper.
 - *ii.* Molar heat capacity of copper.
- 3. How much heat is required to change the temperature of 114g water from 24°C to 37°C.? (specific heat capacity of water is 4.18J/g. K)

SANGAM EDUCATION BOARD - ONLINE RESOURCES