SUVA SANGAM COLLEGE

YEAR 13

MATHEMATICS WORKSHEET 10

Strand	Algebra
Sub-Strand	Sequences
Content Learning	Study Partial Sums, Convergence and Divergent of a Sequence.
Outcome	
Reference from	Pg 127 - 131
Text	

Questions

	CONCEPT IN BRIEF:
	Partial Sum ((S_n)
	- A series is a sum of terms of a sequence.
	- S_n is called the n^{th} partial sum of the series (or sum of the first n terms)
	- A sequence of partial sum is given as $\langle S_1, S_2, S_3, \rangle$
	a_1,a_2,a_3,a_n (sequence) Partial sum $\langle a_1,a_1+a_2,a_1+a_2+a_3 \rangle$
1.	A sequence $< a_n >$ is defined by $a_n = \frac{n+2}{n^2}$ (a) Find the first four terms of the sequence of partial sums.
	(b) Find the 6 th and 8 th term of the sequence.
	CONCEPT IN BRIEF:
	<u>Convergence and Divergence Sequence</u> Sequences which approach a definite value are said to converge . If a sequence converges we
	call the value it approaches the limit .
	If a sequence has a limit, we say the sequence is convergent and that the sequence
	converges to the limit. Otherwise, the sequence is divergent.
	$\lim_{n o \infty} a_n$ =L (specific value) $\lim_{n o \infty} a_n$ = does not exist/ ∞ / $-\infty$
	converges diverge
2.	A sequence $\langle a_n \rangle$ is defined by $a_n = \frac{n+2}{4n+1}$
	a) Find the first four terms of the sequence.
	b) Determine whether a <i>sequence</i> converges or diverges, and if it
	converges, give the value to which it converges to.
	CONCEPT IN BRIEF:
	State steps to expand $(x + y)^n$ using the general formula of the Binomial Theorem.
	$(x+y)^n \xrightarrow{\text{general formula}} general formula$
	1st Term $T_n = \binom{n}{r} (x)^{n-r} (y)^r$
3.	Expand $(3x - 2)^5$ using Binomial Theorem.