SUVA SANGAM COLLEGE YEAR 13 MATHEMATICS WORKSHEET 11

Strand	Algebra
Sub-Strand	Binomial Teorem
Content Learning	Study Binomial Theorem and apply in binomial expansion
Outcome	

Questions

	CONCEPT IN BRIEF:
	To find the nth term in a binomial expansion:
	Steps
	- List x, y, n and r .
	- Determine r
	$r = nth \ term - 1)$
	Example 3^{rd} term $r = 3 - 1 = 2$ 5^{th} term= $5 - 1 = 4$
	- Substitute x, y, n and r in the general formula.
	 Substitute x, y, n and r in the general formata. Simplify
	Shipiny
1.	
	Find the 8 th term in the expansion of $(x^3 - \frac{1}{r^2})^{10}$
	The the observation of $(x - x^2)$
	CONCEPT IN DRIFE.
	CONCEPT IN BRIEF:
	State steps to expand $(x + y)^n$ using the general formula of the Binomial Theorem.
	$(x + y)^n$ general formula $1 - 2^{nd}$ term
	\downarrow \downarrow
	^{1st} Term $T_n = \binom{n}{r} (x)^{n-r} (y)^r$
	Note:
	If the question says find the first 4 terms in the expansion of $(x - 2y)^{30}$
	x = x $y = 2y$ $n = 30$ $r = 0, 1, 2, 3$
2.	
	Write the first 3 terms in the expansion of $(1 + 2x)^{14}$.
	CONCEPT IN BRIEF:
	State steps to expand $(x + y)^n$ using the general formula of the Binomial Theorem.
	$(x + y)^n$ general formula
	\checkmark
	1 st Term $T = \binom{n}{(r)^{n-r}(y)^r}$
	1 st Term $T_n = \binom{n}{r} (x)^{n-r} (y)^r$
3.	Use the binomial theorem to expand and simplify $(x + 2)^4$