

3055 BA SANGAM COLLEGE

PH: 6674003/9264117 E-mail: basangam@connect.com.fj

WEEK 11

School: <u>Ba Sangam College</u> Year / Level: <u>13</u>
Subject: <u>Mathematics</u> Name of student:

Strand	4 – Trigonometry
Sub strand	4.4 – Application of Addition Formulae
Content Learning Outcome	Transform trigonometric expressions into simple ones

Transformation of trigonometric expressions of the form $ACos\ heta + BSin\ heta$

Ref. Yr 13 Mathematics Textbook Pg 96-

101

Addition Formulae

- $sin(A \pm B) = sin A cos B \pm cos A sin B$
- $cos(A \pm B) = cos A cos B \mp sin A sin B$

(i)
$$a \cos \theta \pm b \sin \theta = r \cos (\theta \pm \alpha)$$

(ii)
$$a \cos \theta \pm b \sin \theta = r \sin (\theta \pm \alpha)$$

where α is an angle to be found and r is the modulus i.e. $r = \sqrt{a^2 + b^2}$ and a and b are **coefficients** of **Cos** θ and **Sin** θ respectively.

Example: Express $y = 2 \cos \theta + 3 \sin \theta$ in the form of $R \sin (\theta + \alpha)$.

Answer

$$a = 2, b = 3 :: r = \sqrt{2^2 + 3^2}$$

 $r = \sqrt{13}$

Apply Addition law: $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$ $\sin(\theta + \alpha) = [\sin \theta \cos \alpha + \cos \theta \sin \alpha]$ $r \sin(\theta + \alpha) = r \sin \theta \cos \alpha + r \cos \theta \sin \alpha$

substituting r yields: $\sqrt{13} \sin \theta \cos \alpha + \sqrt{13} \cos \theta \sin \alpha$

Thus in general form,

m, 2
$$\cos \theta + 3 \sin \theta$$

 $= \sqrt{13} \sin \alpha \cos \theta + \sqrt{13} \cos \alpha \sin \theta$

Compare Sine & Cosine functions

$$2 = \sqrt{13} \sin \alpha$$
$$\sin \alpha = \frac{2}{\sqrt{13}}$$
$$\alpha = \sin^{-1} \left(\frac{2}{\sqrt{13}}\right)$$
$$\alpha = 33.69^{\circ}$$

$$3 = \sqrt{13} \cos \alpha$$

$$\cos \alpha = \frac{3}{\sqrt{13}}$$

$$\alpha = \cos^{-1} \left(\frac{3}{\sqrt{13}}\right)$$

$$\alpha = 33.69^{\circ}$$

Since both give the same value for lpha ,

$$\therefore \quad 2 \cos \theta + 3 \sin \theta = \sqrt{13} \sin (\theta + 33.69^{\circ})$$

Example 2: Express $y = 2 \cos \theta + \sqrt{2} \sin \theta$ in the form of $R \cos (\theta + \alpha)$.

Answer

$$a = 2, b = \sqrt{2} : r = \sqrt{\sqrt{2}^2 + 2^2}$$

 $r = \sqrt{6}$

Apply Addition law: $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

And substituting r yields: $\sqrt{6} \cos \theta \cos \alpha - \sqrt{6} \sin \theta \sin \alpha$

Thus in general form,

 $2 \cos \theta + \sqrt{2} \sin \theta$ $\cos \alpha \cos \theta + \sqrt{6} \sin \alpha \sin \theta$

Compare Sine & Cosine functions

$$2 = \sqrt{6} \cos \alpha$$
$$\cos \alpha = \frac{2}{\sqrt{6}}$$

$$\alpha = \cos^{-1}\left(\frac{2}{\sqrt{6}}\right)$$

$$\alpha = 35.26^{\circ}$$

$$\sqrt{2} = -\sqrt{6} \sin \alpha$$
$$\sin \alpha = \frac{\sqrt{2}}{-\sqrt{6}}$$

$$\alpha = \sin^{-1}\!\left(-\frac{\sqrt{2}}{\sqrt{6}}\right)$$

$$\alpha = -35.26^{\circ}$$

As $\cos \alpha$ is positive and $\sin \alpha$ is negative, the angle lies in the 4th quadrant

Anticlockwise angle is positive Clockwise angle is negative

$$\alpha = 360-35.26$$

= 324.74° or -35.26°

$$\therefore 2 \cos \theta + \sqrt{2} \sin \theta = \sqrt{6} \cos (\theta - 35.26^{\circ})$$

ACTIVITY:

(4 marks each)

1. Express $y=2\sin\theta-\cos\theta$ in the form $R\sin(\theta-\alpha)$	2. Express $y = \sqrt{3}\cos\theta - \sin\theta$ in the form $R\sin(\theta - \alpha)$.	3. Express $y = \sqrt{3}\cos\theta + \sin\theta$ in the form $R\cos(\theta + \alpha)$.

