

3055 BA SANGAM COLLEGE

PH: 6674003/9264117 E-mail: basangam@connect.com.fj

Worksheet 12

School: <u>Ba Sangam College</u>	Year / Level: <u>13</u>
Subject: Mathematics	Name of student:
Strand	4 – Trigonometry
Sub strand	4.4 – Application of Addition Formulae
Content Learning Outcome	Transform trigonometric expressions into simple ones

Transformation of trigonometric expressions of the form $ACos \theta + BSin \theta$

Ref. Yr 13 Mathematics Textbook Pg 96-

101

	Addition Formulae
	• $sin(A \pm B) = sin A cos B \pm cos A sin B$
	• $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
(i)	$a \cos \theta \pm b \sin \theta = r \cos (\theta \pm \alpha)$
(ii) $a \cos \theta \pm b \sin \theta = r \sin (\theta \pm \alpha)$

where α is an angle to be found and r is the modulus i.e. $r = \sqrt{a^2 + b^2}$ and a and b are **coefficients** of **Cos** θ and **Sin** θ respectively.

EXAMPLE 1:

Express $y = 2\cos\theta + \sqrt{2}\sin\theta$ in the form $R\cos(\theta + \alpha)$.

Z Answer

 $a = 2, b = \sqrt{2} :: r = \sqrt{\sqrt{2}^2 + 2^2}$ $r = \sqrt{6}$

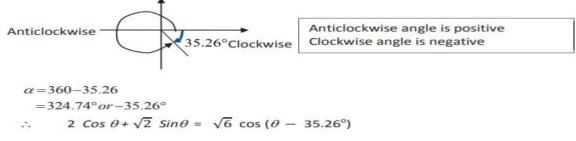
Apply Addition law: • $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$ And substituting *r* yields: $\sqrt{6} \cos \theta \cos \alpha - \sqrt{6} \sin \theta \sin \alpha$

Thus in general form, 2 $\cos \theta + \sqrt{2} \sin \theta$ $= \sqrt{6} \cos \alpha \cos \theta + - \sqrt{6} \sin \alpha \sin \theta$

Compare Sine & Cosine functions

 $2 = \sqrt{6} \cos \alpha$ $\cos \alpha = \frac{2}{\sqrt{6}}$ $\alpha = \cos^{-1}\left(\frac{2}{\sqrt{6}}\right)$ $\alpha = 35.26^{\circ}$ $\sqrt{2} = -\sqrt{6} \sin \alpha$ $\sin \alpha = \frac{\sqrt{2}}{-\sqrt{6}}$ $\alpha = \sin^{-1}\left(-\frac{\sqrt{2}}{\sqrt{6}}\right)$ $\alpha = -35.26^{\circ}$

As $\cos \alpha$ is positive and $\sin \alpha$ is negative, the angle lies in the 4th quadrant



EXAMPLE 2:

Using the previous example,

- a) Give the coordinates of the maximum and minimum point on $y = 2\cos\theta + \sqrt{2}\sin\theta$ for $0 \le \theta \le 360^{\circ}$
- b) Find the x and y intercepts.
- c) Sketch the graph of $y = 2\cos\theta + \sqrt{2}\sin\theta$ for $0 \le \theta \le 360^\circ$
- 😹 Answers

Since it was reduced to a single trig function i.e.

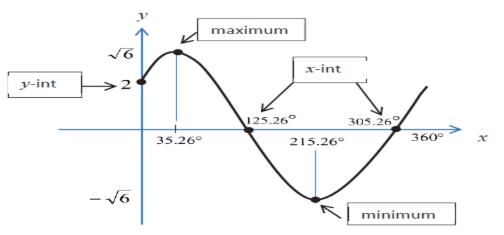
2 $\cos \theta + \sqrt{2} \sin \theta = \sqrt{6} \cos (\theta - 35.26^\circ)$, so it is easier to analyze $y = \sqrt{6} \cos (\theta - 35.26^\circ)$

a) Coordinates of the maximum and minimum point for $0 \le \theta \le 360^{\circ}$ Cosine is maximum at 0° $2\cos\theta + \sqrt{2}\sin\theta = \sqrt{6}\cos(\theta - 35.26^{\circ})$ $\theta - 35.26^{\circ} = 0$ $\theta = 35.26^{\circ}$ The maximum occurs at $(35.26^{\circ}, \sqrt{6})$ Cosine is minimum at 180° $2\cos\theta + \sqrt{2}\sin\theta = \sqrt{6}\cos(\theta - 35.26^{\circ})$ $\theta - 35.26^{\circ} = 180^{\circ}$ $\theta = 215.26^{\circ}$ The minimum occurs at $(215.26^{\circ}, -\sqrt{6})$

b) Intercepts: Let's find the *y*-intercept, By letting $\theta = 0$ $y = \sqrt{6} \cos(\theta - 35.26^\circ)$ $= \sqrt{6} \cos(0 - 35.26^\circ)$ $= \sqrt{6} \cos(-35.26^\circ)$ $\therefore y = 2$ $\theta = 215.26^{\circ}$ The minimum occurs at (215.26°, $-\sqrt{6}$) Let's find the *x*-intercept By letting y = 0 $y = \sqrt{6}\cos(\theta - 35.26^{\circ})$ $0 = \sqrt{6}\cos(\theta - 35.26^{\circ})$

Cosine is 0 at 90° and 270° $\theta - 35.26^\circ = 90^\circ$ $\theta = 125.26^\circ$ $\theta - 35.26^\circ = 270^\circ$ $\theta = 305.26^\circ$ $\therefore x = 125.26^\circ, 305.26^\circ$

c) Graph of $y = 2\cos\theta + \sqrt{2}\sin\theta$ for $0 \le \theta \le 2\pi$ is shown below



ACTIVITY:

- 1.
- A function is given by $f(x) = 7 \sin x + 8 \cos x$
- a) Express the function f(x) in the form $R\cos(x+\alpha)$ where α is an acute angle.
- b) Hence, sketch the graph of $f(x) = 7 \sin x + 8 \cos x$ for $0 \le \theta \le 360^{\circ}$
- c) Solve the equation $7\sin x + 8\cos x = 6$ for $0 \le \theta \le 360^\circ$

(6 m)

2.

A function is given by $f(x) = 7\cos x - 6\sin x$.

- a) Express the function f(x) in the form $f(x) = R\cos(x + \theta)$, where θ is an acute angle.
- b) Hence, sketch the graph of $f(x) = 7\cos x 6\sin x$ for $0 \le \theta \le 360^\circ$
- c) Solve the equation $7\cos x 6\sin x = 5$ for $0 \le \theta \le 360^\circ$

(6 m)

