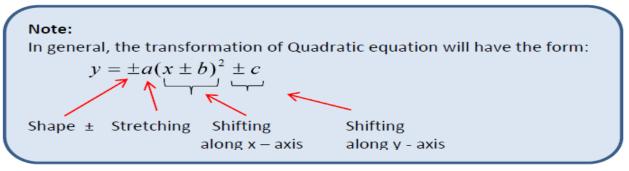


3055 BA SANGAM COLLEGE


PH: 6674003/9264117 E-mail: basangam@connect.com.fj

WORKSHEET 13

School: <u>Ba Sangam College</u>	Year / Level: <u>11</u>
Subject: Mathematics	Name of Student:
Strand	3 – Graphs
Sub strand	3.1 – Graphs and Intersections
Content Learning Outcome	Studying and interpreting graphs

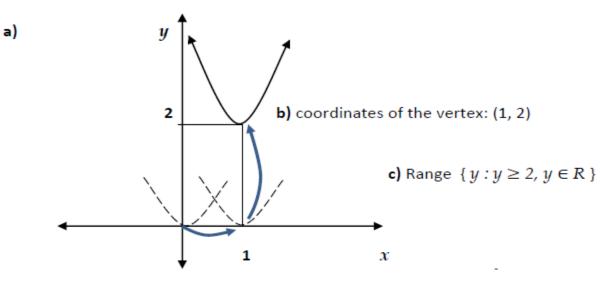
Transformation of Quadratic Graphs

The table below shows how the transformation works by shifting the basic shape:

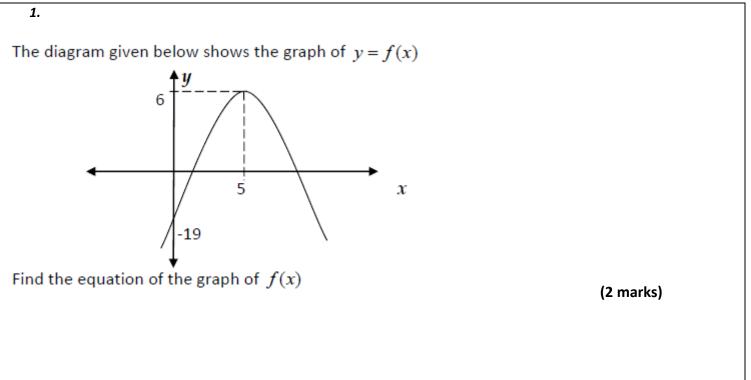
General Form	Explanation	Diagram	Example
General Form $y = \pm x^2$ This is the basic shape to start with. It will be at the origin (0,0) with y – axis as the line of symmetry	Explanation Shape: $+x^2$ $-x^2$	Positive shape Negative shape	Example $y = x^2$ $y = -x^2$

$y = \pm ax^2$ In front i.e. the coefficient of x^2	Stretching: -1 > a and a > 1 Narrow -1 < a < 1 Wide		$y = 3x^{2}$ $y = -\frac{1}{2}x^{2}$
$y = (x \pm b)^2$	Shifting along x-axis: + b move left - b move right	Horizontal line	$y = (x-3)^2$ $y = -(x+2)^2$

$y = x^2 \pm c$	Shifting along y-axis: + c move up - c move down	+ c up	$y = x^2 - 3$ ans -3 $y = -x^2 + 1$
$y = \pm a(x \pm b)^2 \pm$	€ombinatio n of all shifting	5 unit left and 3 unit down	$y = -(x+5)^2 - 3$ y

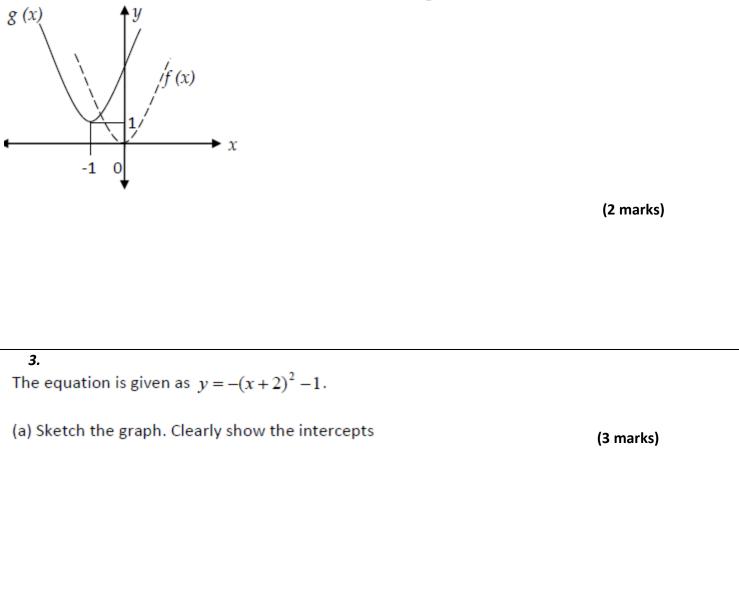

EXAMPLE 1: The equation is given as $y = (x - 1)^2 + 2$.

(a) Sketch the graph. Clearly show the intercepts


(b)Give the coordinates of the vertex

(c) State the range of the function

Answers:



ACTIVITY

2.

The graph of f (x) has been transformed to y = g(x) and the resulting graph is shown. Find the most appropriate equation for g(x).

(b) Give the coordinates of the vertex	(1 mark)
(c) Identify the axis of symmetry.	(1 mark)
(d) State the range of the function	(1 mark)

THE END