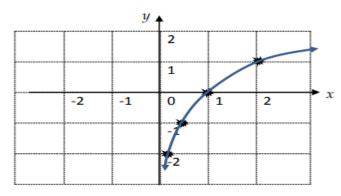


3055 BA SANGAM COLLEGE

PH: 6674003/9264117 E-mail: basangam@connect.com.fj


WORKSHEET 13

School: <u>Ba Sangam College</u>	Year / Level: <u>12</u>	
Subject: <u>Mathematics</u>	Name of Student:	
Strand	3 – Graphs	
Sub strand	3.1 – Graphs and Intersections	
Content Learning Outcome	Studying and interpreting graphs	

Logarithmic and Exponential Functions (Ref: Year 12 Mathematics Pg 112 – 114)

EXAMPLE 1: Sketch graph of $y = \log_2 x$

x	0.125	0.25	0.5	1	2
$y = \log_2 x$ $= \frac{\log x}{\log 2}$	-3	-2	-1	0	1

• The y-axis is an asymptote because log 0 is undefined

EXAMPLE 2: A function is given as $f(x) = 3^x$

Find the coordinates of the y – intercept

ii. Sketch the graph of f(x) and label it clearly

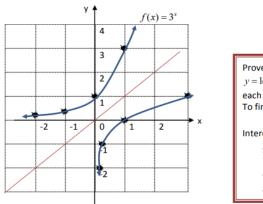
Another function is defined as $g(x) = \log_3 x$

iii. On the pair of axes, Sketch the graph of g(x), showing the x – intercept clearly

iv. Describe fully the transformation that maps the graph of f(x) onto the graph of g(x).

Answers:

i. y - int, let x = 0 and solve


 $f(x) = 3^{x}$ $\therefore y = 3^{x}$ $= 3^{0} = 1$

(0,1)

ii. Sketch: using tables

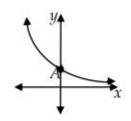
X	-2	-1	0	1	2
$y = 3^x$	$y = 3^{-2} = \frac{1}{9}$	$y = 3^{-1} = \frac{1}{3}$	$y = 3^0 = 1$	$y = 3^1 = 3$	$y = 3^2 = 9$

Prove that $f(x) = 3^x$ and $y = \log_3 x$ are inverses of each other. To find the inverse: $y = 3^x$ Interchange x and y
$3^{y} = x$ $\log 3^{y} = \log x$ $y = \frac{\log x}{\log 3}$ $y = \log_{3} x$

Transformation Rules				
Function Notation	Type of Transformation	Change to Coordinate Point		
f(x) + d	Vertical translation up d units	$(x, y) \rightarrow (x, y+d)$		
f(x) - d	Vertical translation down d units	$(x, y) \rightarrow (x, y - d)$		
f(x + c)	Horizontal translation left c units	$(x,y) \rightarrow (x-c,y)$		
f(x - c)	Horizontal translation right c units	$(x,y) \rightarrow (x+c,y)$		
-f(x)	Reflection over x-axis	$(x,y) \rightarrow (x,-y)$		
f(-x)	Reflection over y-axis	$(x,y) \rightarrow (-x,y)$		
af(x)	Vertical stretch for a >0	$(x,y) \rightarrow (x,ay)$		
af(x)	Vertical compression for $0 < a < 1$	$(x, y) \rightarrow (x, ay)$		
f(bx)	Horizontal compression for b >0	$(x,y) \rightarrow \left(\frac{x}{b}, y\right)$		
f(bx)	Horizontal stretch for 0 < b < 1	$(x,y) \rightarrow \left(\frac{x}{b}, y\right)$		

iv. Reflection in the line y = x.

ACTIVITY


(10 marks)

A function is given as $f(x) = 2^x$.

1.

- a) Sketch the graph of f(x) and label it clearly
- b) Find the expression for g(x) = -f(x)
- c) Sketch the graph of g(x) and label it clearly
- d) Describe fully the transformation that maps the graph of f(x) onto the graph of g(x).

2. (2 marks) The diagram below shows the graph of $y = \frac{1}{2^x}$.

- a) Give the coordinates of point A.
- b) On the pair of axes, draw the graph of its inverse.