PENANG SANGAM HIGH SCHOOL DEPARTMENT OF MATHEMATICS/PHYSICS

YEAR 11 MATHEMATICS - WEEK 14

STRAND 4

GRAPHS

4.1 GRAPHS

Learning Objective

At the end of this lesson, students should be able to:

- Transform quadratic equation in the form $a(x \pm h)^{2} \pm k$

Quadratic Functions

* Quadratic equation has the degree (i.e. the highest power of the variable) equal to 2.
* All quadratic equations have a standard equation. That is:

$$
y=a x^{2}+b x+c
$$

Where: a, b and c are constants

$$
a \neq 0
$$

Completing the Square

* The technique of completing the square is a method used to write quadratic expressions in perfect square form. That is a quadratic equation $a x^{2}+b x+c=0$ is written as $a(x \pm h)^{2} \pm k=0$

Example 1

Write $x^{2}+6 x+7$ as $a(x \pm h)^{2} \pm k$

$$
\begin{aligned}
& \begin{array}{l}
x^{2}+6 x+7=0 \\
x^{2}+6 x+7-7=0-7 \\
x^{2}+6 x=-7 \\
\text { Complete the square and add } \\
\text { to both sides } \\
x^{2}+6 x+9=-7+9
\end{array} \\
& \hline\left(\frac{6}{2}\right)^{2}=(3)^{2}=9
\end{aligned}
$$

Factorize

$(x+3)^{2}=2$
$(x+3)^{2}-2=2-2$
$(x+3)^{2}-2=0$
$\therefore x^{2}+6 x+7=(x+3)^{2}-2$

Example 2

White $x^{2}-4 x+3$ as $a(x \pm h)^{2} \pm k$
$x^{2}-4 x+3=0$
$x^{2}-4 x+3-3=0-3$
$x^{2}-4 x=-3$
Complete the square and add
to both sides \longrightarrow
$\underbrace{x^{2}-4 x+4}$
Factorize

$$
\left(\frac{b}{2}\right)^{2}=c
$$

$(x-2)^{2}=1$
$(x-2)^{2}-1=1-1$
$(x-2)^{2}-1=0$
$\therefore x^{2}-4 x+3=(x-2)^{2}-1$

Example 3: Write $3 x^{2}-2 x+5$ as $a(x \pm h)^{2} \pm k$
Factorize to make the coefficient of x^{2} equal to 1
$3\left(x^{2}-\frac{2}{3} x+\frac{5}{3}\right)$
$3\left(x^{2}-\frac{2}{3} x+\frac{5}{3}\right)=0$
Complete the square and add to both sides

$$
\left(x^{2}-\frac{2}{3} x+\frac{5}{3}\right)=0
$$

$$
\begin{gathered}
\left(\frac{b}{2}\right)^{2}=c \\
\left(\frac{-2 / 3}{2}\right)^{2}=\left(\frac{-1}{3}\right)^{2}=\frac{1}{9} \rightarrow C
\end{gathered}
$$

$x^{2}-\frac{2}{3} x+\frac{5}{3}-\frac{5}{3}=0-\frac{5}{3}$
$\left(x-\frac{1}{3}\right)^{2}+\frac{14}{9}=-\frac{14}{9}+\frac{14}{9}$
$x^{2}-\frac{2}{3} x=-\frac{5}{3}$

$$
\left(x-\frac{1}{3}\right)^{2}+\frac{14}{9}=0
$$

$\underbrace{x^{2}-\frac{2}{3} x+\frac{1}{9}}=-\frac{5}{3}+\frac{1}{9}$
Factorize

$$
\left(x-\frac{1}{3}\right)^{2}=-\frac{14}{9}
$$

Exercise: Write the following in the form $(x+a)^{2}+b$

1. $x^{2}-8 x+5$
2. $x^{2}+10 x+30$
3. $2 x^{2}+4 x-3$
