PENANG SANGAM HIGH SCHOOL DEPARTMENT OF MATHEMATICS/PHYSICS YEAR 11 MATHEMATICS - WEEK 15

STRAND 4

4.1 <u>GRAPHS</u>

<u>GRAPHS</u>

Learning Objective

At the end of this lesson, students should be able to:

• Draw quadratic graphs

Graphing Quadratic Functions

- Quadratic graphs are either " \cup shaped" or " \cap shaped".
- It has a turning point.
- The graph will be symmetrical about the turning point (vertex).
- To sketch the graph of a quadratic function of the form $y = ax^2 + bx + c$:
- 1. Calculate the y intercept: Let x = 0 and solve for y.
- 2. Calculate the x intercept: Let y = 0 and solve for x.
- 3. Calculate the coordinated for the vertex
 - The x coordinate is the midpoint between the two x intercepts.
 - By substituting this value of x in the equation, the y coordinate is obtained.
- 4. Check the coefficient of x^2
 - If it is positive, the graph has the shape \cup
 - If it is negative, the graph has the shape \cap
- 5. Plot the points and sketch.

Example: Sketch $y = x^2 + 5x + 6$

Vertex Form of A Quadratic Function

✤ The vertex form of quadratic equation is given as:

$$y=a(x - k)^2 + h$$
 Where the coordinates for the vertex is (k, h)

• The line of symmetry is x = k

SANGAM EDUCATION BOARD – ONLINE RESOURCES

• For x-intercept let y = 0 and for y-intercept let x = 0.

Example: Sketch the graph of $y = 3(x-2)^2 - 4$.

Exercise

1. Sketch the graph of the following giving the coordinates of the vertex and the equation of the axis of symmetry:

$$y = 2(x-3)^2 - 3.$$

2. Change the following equations in the form $f(x) = a(x - h)^2 + k$ using perfect square and sketch its graph showing the intercepts and vertex.

$$y = x^2 - 2x + 3$$