BA SANGAM COLLEGE YEAR 13 MATHEMATICS WORKSHEET 4

STRAND 1

COMPLEX NUMBERS

1. For the complex number $Z = 3 CIS \frac{3\pi}{2}$	
(a) Find: (i) Arg(z)	
ii) $ z $, the modulus of z	
(b) Plot the points Z and \overline{Z} on an argand diagram.	(1½ marks)
2. For the complex number $W = -\sqrt{2} - 1$	
i) Write W in polar form.	
 ii) Use De Moivre's Theorem to find W³ and express the answe from. 3. State whether each statement given below is true or false. 	er in rectangular
	\neg
a) $i^3 + i^5 = 0$	
b) $3 cis 20^{0} \times 2 cis 10^{0} = 6 cis 200^{0}$	
c) If $Arg(z) = 90^0$ then $Arg(\overline{z}) = 180^0$	
d) $\sqrt{-1} = i$	
4. In the complex plane, shade the region where $-1 < \text{Im}(z) \le 2$	(2 marks)
5. If $v = 2 + 3i$ and $w = 5 + 4i$, find:	
(a) v	(1 mark)
(b) $v+w$	(1 mark)
(c) \overline{w}	(½ mark)
6. Solve the equation $Z^4 = -64$	
Express your answer in rectangular form.	(4 marks)

1. Find the unit vector that has the same direction as y = 2i - j - 2k

unit vector = ______(2 marks)

- iii) Hence, calculate the angle between \underline{a} and \underline{b} (1½ marks) $\underline{a}.\underline{b} = |\underline{a}| \times |\underline{b}| \cos \theta$
- 2. Write the symmetric equation of the line passing through (1, -2, -4) in the direction of $\begin{pmatrix} 3 \\ 5 \\ -1 \end{pmatrix}$ (2 marks)
- 3. The vector form of the equation of a line is given as

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 4 \\ -5 \\ 6 \end{pmatrix}$$

- (i) Give the coordinates of a point that lies on this line. (½ mark)
- (ii) Give a direction vector of this line. (½ mark)
- 4. If P is the point (1, 1, 0) and R is the point (1, 6, -5), find the coordinates of a point Q on the line PR given that PQ: QR = 3:2. (2 marks)

$$\underline{P} = \frac{m \underline{B} + n \underline{A}}{m + n} \qquad \underline{A} \qquad \underline{m} \qquad \underline{P} \qquad \underline{n} \qquad \underline{B}$$