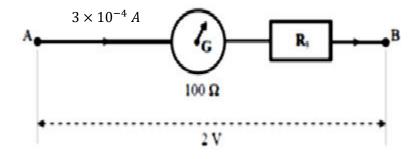
SUVA SANGAM COLLEGE

YEAR 13

PHYSICS

WORKSHEET 11


Strand 5 -P13.5	Direct Current
Reference from Text	Pg 88 to 137

Questions

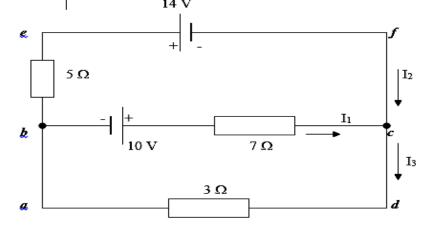
- **No. CONCEPT IN BRIEF: Current density:** If a current is uniformly distributed over a cross-sectional area A, the *current density* (\boldsymbol{J}) is given by $J = \frac{l}{A}$, J = nev
- 1. A metal wire of cross sectional area $4 mm^2$ carries a current of 5 A and has 6×10^{28} free electrons per cubic metre.
 - a) Calculate its current density
 - b) Calculate the drift velocity of the electrons

CONCEPT IN BRIEF: To convert a Galvanometer into Voltmeter, a very high resistance known as "shunt" resistor is connected in series to Galvanometer.

2. A galvanometer with resistance 100Ω has a full scale deflection (fsd) when $3 \times 10^{-4} A$ is passed through it.

Calculate the:

- a)potential drop across the galvanometer.
- b) potential drop across R_s .
- c) value of R_s


CONCEPT IN BRIEF: Kirchhoff's Rule 1. (The junction rule) (for current)

$$\sum I_{entering} = \sum I_{leaving}$$

Kirchhoff's rule 2. (The loop rule) (for voltage)

$$\sum V = 0$$

3. A multi-loop circuit is given below.

- (a) Use Kirchhoff's first law, write an equation for junction c.
- (b) Using Kirchhoff's second law, write equation for the loops: