SUVA SANGAM COLLEGE

<u>YEAR 12</u>

PHYSICS

WORKSHEET 11

STRAND 1 MECHANICS

NO.	CONCEPT IN BRIEF: MOMENTUM					
	CHANGE IN MOMENTUM.					
	Change in momentum = Final momentum - Initial momentum					
	$\Delta p = p_f - p_i$					
1	A ball of 2kg was thrown against a wall at 3m/s to the left and rebounds at 3 m/s. What is the change in					
	momentum of the body?					
	wall after after after after after after before 2 kg before					
2	CONCEPT IN BRIEF: MOMENTUM					
	IMPULSE					
	• Impulse is the product of the average force and the time internal over which the force is applied.					
	$F \mathbf{x} \Delta \mathbf{t} = \Delta \mathbf{p}$					
	Impulse = change in momentum.					
	(Ns) (Kgm/s)					
2	How long must a 200kg satellite, in orbit, fire its thruster resket in order to increase its speed from					
۷.	500m/s to 600m/s? The force exerted by the thruster when firing is 1500N					
	soonys to boonys. The force excited by the thruster when himg is 15000					

	CONCEPT IN BRIEF: MOMENTUM CONSERVATION OF MOMENTUM IN TWO DIMENSIONS					
	Momentum is conserved in collision and explosion Momentum before collision / explosions = Momentum after collision / explosions					
	Masses move separately $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$ Masses stick together $m_1u_1 + m_2u_2 = (m_1 + m_2)v_c$ Elastic and Inelastic collisions An elastic collision is one in which the total kinetic energy is the same before and after collision. $KE_i = KE_f$ An inelastic collision is one in which the total kinetic energy before collision is not equal to the total kinetic energy after collision. If the object sticks together after collision, the collision is said to be completely inelastic. $KE_i \neq KE_f$					
3	A bowling ball, A, of mass 1.5kg and travelling to the right at 3.0m/s hits an identical ball, B , which is stationary. Ball A moves off at 2.0m/s at an angle of 90° to the direction in which B moves.					
		△				
	Before collision after collision $v_1 = 2m/s$					
	$u_1 = 3m/s$ $(A) \longrightarrow (B) u_2 = 0m/s$ $m_1 = 1.5kg m_2 = 1.5kg$ B					
	 v2 = ? (a) Find the speed of the ball B after collision. (b) Find the direction of ball A after the collision. (c) Find the direction of the ball B after the collision. (d) Show that collision in elastic collision 					