

3055 BA SANGAM COLLEGE

PH: 6674003/9264117 E-mail: basangam@connect.com.fj

WORKSHEET 13

SCHOOL: BA SANGAM COLLEGE SUBJECT: PHYSICS YEAR: 13

PHYSICS	NAMEOF STUDENT:			
STRAND	4- ELECTROSTATIC			
SUB-STRAND	Capacitors with Dielectric			
LEARNING OUTCOME	To understand about capacitors connected in circuits			

Capacitors with Dielectric

- In many capacitors there is an insulating material such as waxed paper, rubber or glass between the plates. Such material, called a **dielectric**,
- Dielectric provides an increase in capacitance, reduces loss of charge and allows stronger electric field to form between the plates.
- for capacitors that have a dielectric material with a dielectric constant (k), the capacitance is given by;

Where: $\kappa =$ dielectric constant

 ε_{o} = permittivity of free space

A = Plate area

- d = distance between the plates (gap)
- Experiments indicate that all dielectric materials have k >1

Dielectric materials with their dielectric constant.

Material	Air	Paper	Glass	Teflon	Water
к	1	3.7	4-6	2.1	80

Example

A parallel-plate air-filled capacitor has a capacitance of 50 pF.

a) If each of its plates has an area of 0.35 m², what is the separation?

b) If the region between the plates is now filled with material having= 5.6, what is the capacitance

Solution

a)
$$d = \varepsilon_o \frac{A}{C} = \left(8.85 \times 10^{-12}\right) \left(\frac{0.35}{50 \times 10^{-12}}\right) = 0.062 \text{ m}$$

b)
$$C = \kappa C_i = (5.6) (50 \text{ pF}) = 280 \text{ pF}$$

EXERCISE

1. The plates of a parallel plate capacitor are separated by a distance of 5.0 mm and the area of each plate is 2 cm x 10 cm. A **dielectric material of waxed paper** is placed between the plates and the potential difference between the plates is 2000V,

Determine:

(i) the capacitance

- (ii) the charge on each plate
- (iii) the electric field intensity between the plates
- (iv) the energy stored in the capacitor

(6 marks)

2. A water-filled capacitor consists of two parallel plates, each with an area of 7.60 cm² and separated by a distance of 1.80 mm. If a 20.0 V potential difference is applied to these plates, calculate the:
a) Capacitance of the capacitor

b) electric field strength

c) charge between the plates.

(4marks)