## PENANG SANGAM HIGH SCHOOL YEAR 12 PHYSICS WEEK 14

| Strand     | MECHANICS                                                             |
|------------|-----------------------------------------------------------------------|
| Sub Strand | Kinematics                                                            |
| Content    | At the end of the lesson students should be able to                   |
| Learning   | • Apply the 3 kinematic equations to solve projectile motion problems |
| Outcome    | • Apply the 5 kinematic equations to solve projectile motion problems |

Horizontally launched projectiles

## Horizontally launched projectiles

here the object has an initial horizontal velocity. The vertical velocity at the start is 0m/s



- a. Throughout the motion the horizontal velocity remains the same
- b. The vertical velocity at the start is 0m/s and increases throughout the motion

## c. To find the time of flight we will use

$$d = V_1 t + \frac{1}{2} a t^2$$

Where s is the vertical distance or the height and  $v_i$  must be the initial vertical velocity. ( remember the velocity substituted in the formula must be in the same line as the distance )

- d. To find the vertical velocity at any point use the formula  $V_F = V_I + at$
- e. To find the range use the formula
- $R = H_V x$  total time
- f. At any point of the projectile there are two types of velocity ie vertical and horizontal. To find the velocity at any point use

Velocity =  $H_v$  +  $V_v$  both are vectors so put the direction and then use vector addition.

Eg. A canon is fired horizontally from a cliff at 40m/s.



b. Find the range

$$range = H_V x t.t$$
  
= 40 X 10.95  
= 438m

c. Find the vertical velocity of the canon at the bottom

$$v_f = v_i + at$$
  
= 0 + 10 (10.95)  
= 109.5 m/s  $\downarrow$ 

- d. What is the horizontal velocity at the bottom. The horizontal velocity remains same throughout the motion therefore is  $\overline{40m/s}$
- e. Find the velocity at the bottom
  Since there is both velocities at the bottom that is vertical and horizontal,
  add the two using vector addition. Remember velocity is a vector quantity.



Find the size of C using Pythagoras theorem and find the angle

1. A canon is fired horizontally from a cliff at 60m/s.  $V_{\rm V}$  at start is 0m/s



a. Find the time taken by the canon to reach the bottom

$$d = v_i t + \frac{1}{2}at^2$$

b. Find the range

$$range = H_V x t.t$$

c. Find the vertical velocity of the canon at the bottom

$$v_f = v_i + at$$

- d. What is the horizontal velocity at the bottom.The horizontal velocity remains same throughout the motion therefore is
- e. Find the velocity at the bottom
  Since there is both velocities at the bottom that is vertical and horizontal , add the two using vector addition. Remember velocity is a vector quantity.

Velocity at the bottom = 
$$H_v + V_v$$
  
= +

Find the size of C using Pythagoras theorem and find the angle