PENANG SANGAM HIGH SCHOOL YEAR 11 PHYSICS WEEK 14

Strand	ENERGY
Sub Strand	Work Power And
	Energy.
Content	At the end of the lesson students should be able to
Learning	• define energy and distinguish it from the concept of work.
Outcome	

THERMAL ENERGY

Heat flows from a region of high temperature to a region of low temperature until all the regions are at the same temperature. Temperature is how hot an object is.

Heat transfer

- a. **Conduction** this is the heat transfer in solids without the movement of particles.
- b. Convection this is the heat transfer in liquids and gases with the movement of particles. Convection needs gravity to work therefore it cannot take place in vacuum or space.
- c. **Radiation** this is the heat transfer through electromagnetic waves. All bodies radiate. This can take place anywhere.
- i. Dull, black, rough surfaces are good radiators, good absorbers, good emitters but bad reflectors.
- ii. Shiny, silver and polished surfaces are bad radiators, bad absorbers, bad emitters but good reflectors.

substance	Specific heat capacity in J/kg ⁰ C	
WATER	4200	
ALCOHOL	2400	
ICE	2100	
ALUMINIUM	960	
GLASS	670	
IRON	440	
COPPER	400	

When ever there is a temperature change either increase or decrease then the energy can be calculated by the formula

 $E = m c \Delta T$

M – mass in kg, c is the specific heat capacity, ΔT can either be the temperature or change in temperature.

Power is given by the formula

Ρ	= <u>ENERGY</u>	Р	= <u>WORKDONE</u>
	TIME		TIME

POWER in watts W, energy in joules J, and time must always be in seconds.

1. 3kg water is at a temperature of 56° C⁻ Find the energy it has.

E = **m c ΔT** = 3(4200)(56) = 705,600J

- 2. 2.5kg of copper is at a temperature of 30° C. How much energy is required to get the temperature to 78° C.
- 3. 453600J of energy is supplied to 3kg of water which is at a temperature of 20° C.
 - i. Find the change in temperature of water
 - ii. Find the new temperature of water
- 4. A heater is immersed in 2kg of water at 45 $^{\circ}$ C. The temperature becomes 72 $^{\circ}$ C in 5minutes.
 - i. Find the energy given out by the heater
 - ii. Find the heaters power

SANGAM EDUCATION BOARD- ONLINE RESOURCES