

3055 BA SANGAM COLLEGE

PH: 6674003/9264117 E-mail: basangam@connect.com.fj

WORKSHEET 14

SCHOOL:BA SANGAM COLLEGE

SUBJECT: PHYSICS

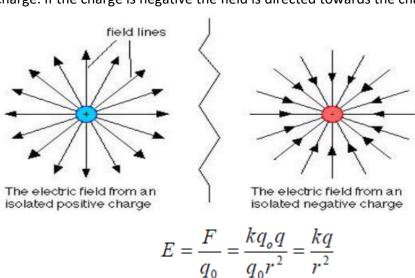
YEAR 12	
NAME OF STUDENT:	

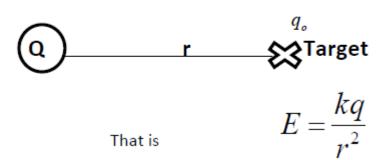
STRAND	ELECTRICITY
SUB-STRAND	ELECTROSTATICS
Content Learning Outcome Explore electric forces by using Coulomb's law and effects on charged objects	

ELECTRIC FIELD

Electric Field is an area of influence around a charged object. The magnitude of the field is proportional to the amount of electrical force exerted on a positive test charge placed at a given point in the field.

$$E = \frac{F}{q}$$


E = Electric Field (N/C)


F = Electrostatic Force (N)

q = Test Charge (C)

FIELD NEAR A POINT CHARGE

A point charge has around it a radial electric field. If the charge is positive the field is directed away from the charge. If the charge is negative the field is directed towards the charge.

EXAMPLE

Shirley pulls her wool sweater over her head, which charges her body as the sweater rubs against her cotton shirt.

- (a) What is the electric field at a location where a 1.60×10^{-19} C piece of lint experiences a force of 3.2×10^{-9} N as it floats near Shirley?
- (b) What will happen if Shirley now touches a conductor such as a door knob?

Soln:

a).
$$E = \frac{F}{O} = \frac{3.2 \times 10^{-9} N}{1.6 \times 10^{-19} C} = \frac{2 \times 10^{10} \text{ N/C}}{1.6 \times 10^{-19} C}$$

b) She will reduce her charge in a process called grounding, in which excess electrons flow from her body into the ground and spread evenly over the surface of Earth.

EXERCISE:

1. A fly accumulates 3.0×10^{-10} C of positive charge as it flies through the air. What is the magnitude and direction of the electric field at a location 2.0 cm away from the fly?

2. Two charges of Q1 = +3 nC(3 \times 10⁹C) and Q2 = -4 nC(-4 \times 10⁹C) are separated by a distance of 40 cm. What is the electric field strength at a point that is 10 cm from Q1 and 30 cm from Q2? The point lies between Q1 and Q2.

